216 lines
8.7 KiB
C#
Raw Normal View History

2023-04-24 15:49:03 +02:00
using UnityEngine;
namespace Pathfinding.Util {
/// <summary>
/// Transforms to and from world space to a 2D movement plane.
/// The transformation is guaranteed to be purely a rotation
/// so no scale or offset is used. This interface is primarily
/// used to make it easier to write movement scripts which can
/// handle movement both in the XZ plane and in the XY plane.
///
/// See: <see cref="Pathfinding.Util.GraphTransform"/>
/// </summary>
public interface IMovementPlane {
Vector2 ToPlane(Vector3 p);
Vector2 ToPlane(Vector3 p, out float elevation);
Vector3 ToWorld(Vector2 p, float elevation = 0);
}
/// <summary>Generic 3D coordinate transformation</summary>
public interface ITransform {
Vector3 Transform(Vector3 position);
Vector3 InverseTransform(Vector3 position);
}
/// <summary>
/// Defines a transformation from graph space to world space.
/// This is essentially just a simple wrapper around a matrix, but it has several utilities that are useful.
/// </summary>
public class GraphTransform : IMovementPlane, ITransform {
/// <summary>True if this transform is the identity transform (i.e it does not do anything)</summary>
public readonly bool identity;
/// <summary>True if this transform is a pure translation without any scaling or rotation</summary>
public readonly bool onlyTranslational;
readonly bool isXY;
readonly bool isXZ;
readonly Matrix4x4 matrix;
readonly Matrix4x4 inverseMatrix;
readonly Vector3 up;
readonly Vector3 translation;
readonly Int3 i3translation;
readonly Quaternion rotation;
readonly Quaternion inverseRotation;
public static readonly GraphTransform identityTransform = new GraphTransform(Matrix4x4.identity);
public GraphTransform (Matrix4x4 matrix) {
this.matrix = matrix;
inverseMatrix = matrix.inverse;
identity = matrix.isIdentity;
onlyTranslational = MatrixIsTranslational(matrix);
up = matrix.MultiplyVector(Vector3.up).normalized;
translation = matrix.MultiplyPoint3x4(Vector3.zero);
i3translation = (Int3)translation;
// Extract the rotation from the matrix. This is only correct if the matrix has no skew, but we only
// want to use it for the movement plane so as long as the Up axis is parpendicular to the Forward
// axis everything should be ok. In fact the only case in the project when all three axes are not
// perpendicular is when hexagon or isometric grid graphs are used, but in those cases only the
// X and Z axes are not perpendicular.
rotation = Quaternion.LookRotation(TransformVector(Vector3.forward), TransformVector(Vector3.up));
inverseRotation = Quaternion.Inverse(rotation);
// Some short circuiting code for the movement plane calculations
isXY = rotation == Quaternion.Euler(-90, 0, 0);
isXZ = rotation == Quaternion.Euler(0, 0, 0);
}
public Vector3 WorldUpAtGraphPosition (Vector3 point) {
return up;
}
static bool MatrixIsTranslational (Matrix4x4 matrix) {
return matrix.GetColumn(0) == new Vector4(1, 0, 0, 0) && matrix.GetColumn(1) == new Vector4(0, 1, 0, 0) && matrix.GetColumn(2) == new Vector4(0, 0, 1, 0) && matrix.m33 == 1;
}
public Vector3 Transform (Vector3 point) {
if (onlyTranslational) return point + translation;
return matrix.MultiplyPoint3x4(point);
}
public Vector3 TransformVector (Vector3 point) {
if (onlyTranslational) return point;
return matrix.MultiplyVector(point);
}
public void Transform (Int3[] arr) {
if (onlyTranslational) {
for (int i = arr.Length - 1; i >= 0; i--) arr[i] += i3translation;
} else {
for (int i = arr.Length - 1; i >= 0; i--) arr[i] = (Int3)matrix.MultiplyPoint3x4((Vector3)arr[i]);
}
}
public void Transform (Vector3[] arr) {
if (onlyTranslational) {
for (int i = arr.Length - 1; i >= 0; i--) arr[i] += translation;
} else {
for (int i = arr.Length - 1; i >= 0; i--) arr[i] = matrix.MultiplyPoint3x4(arr[i]);
}
}
public Vector3 InverseTransform (Vector3 point) {
if (onlyTranslational) return point - translation;
return inverseMatrix.MultiplyPoint3x4(point);
}
public Int3 InverseTransform (Int3 point) {
if (onlyTranslational) return point - i3translation;
return (Int3)inverseMatrix.MultiplyPoint3x4((Vector3)point);
}
public void InverseTransform (Int3[] arr) {
for (int i = arr.Length - 1; i >= 0; i--) arr[i] = (Int3)inverseMatrix.MultiplyPoint3x4((Vector3)arr[i]);
}
public static GraphTransform operator * (GraphTransform lhs, Matrix4x4 rhs) {
return new GraphTransform(lhs.matrix * rhs);
}
public static GraphTransform operator * (Matrix4x4 lhs, GraphTransform rhs) {
return new GraphTransform(lhs * rhs.matrix);
}
public Bounds Transform (Bounds bounds) {
if (onlyTranslational) return new Bounds(bounds.center + translation, bounds.size);
var corners = ArrayPool<Vector3>.Claim(8);
var extents = bounds.extents;
corners[0] = Transform(bounds.center + new Vector3(extents.x, extents.y, extents.z));
corners[1] = Transform(bounds.center + new Vector3(extents.x, extents.y, -extents.z));
corners[2] = Transform(bounds.center + new Vector3(extents.x, -extents.y, extents.z));
corners[3] = Transform(bounds.center + new Vector3(extents.x, -extents.y, -extents.z));
corners[4] = Transform(bounds.center + new Vector3(-extents.x, extents.y, extents.z));
corners[5] = Transform(bounds.center + new Vector3(-extents.x, extents.y, -extents.z));
corners[6] = Transform(bounds.center + new Vector3(-extents.x, -extents.y, extents.z));
corners[7] = Transform(bounds.center + new Vector3(-extents.x, -extents.y, -extents.z));
var min = corners[0];
var max = corners[0];
for (int i = 1; i < 8; i++) {
min = Vector3.Min(min, corners[i]);
max = Vector3.Max(max, corners[i]);
}
ArrayPool<Vector3>.Release(ref corners);
return new Bounds((min+max)*0.5f, max - min);
}
public Bounds InverseTransform (Bounds bounds) {
if (onlyTranslational) return new Bounds(bounds.center - translation, bounds.size);
var corners = ArrayPool<Vector3>.Claim(8);
var extents = bounds.extents;
corners[0] = InverseTransform(bounds.center + new Vector3(extents.x, extents.y, extents.z));
corners[1] = InverseTransform(bounds.center + new Vector3(extents.x, extents.y, -extents.z));
corners[2] = InverseTransform(bounds.center + new Vector3(extents.x, -extents.y, extents.z));
corners[3] = InverseTransform(bounds.center + new Vector3(extents.x, -extents.y, -extents.z));
corners[4] = InverseTransform(bounds.center + new Vector3(-extents.x, extents.y, extents.z));
corners[5] = InverseTransform(bounds.center + new Vector3(-extents.x, extents.y, -extents.z));
corners[6] = InverseTransform(bounds.center + new Vector3(-extents.x, -extents.y, extents.z));
corners[7] = InverseTransform(bounds.center + new Vector3(-extents.x, -extents.y, -extents.z));
var min = corners[0];
var max = corners[0];
for (int i = 1; i < 8; i++) {
min = Vector3.Min(min, corners[i]);
max = Vector3.Max(max, corners[i]);
}
ArrayPool<Vector3>.Release(ref corners);
return new Bounds((min+max)*0.5f, max - min);
}
#region IMovementPlane implementation
/// <summary>
/// Transforms from world space to the 'ground' plane of the graph.
/// The transformation is purely a rotation so no scale or offset is used.
///
/// For a graph rotated with the rotation (-90, 0, 0) this will transform
/// a coordinate (x,y,z) to (x,y). For a graph with the rotation (0,0,0)
/// this will tranform a coordinate (x,y,z) to (x,z). More generally for
/// a graph with a quaternion rotation R this will transform a vector V
/// to R * V (i.e rotate the vector V using the rotation R).
/// </summary>
Vector2 IMovementPlane.ToPlane (Vector3 point) {
// These special cases cover most graph orientations used in practice.
// Having them here improves performance in those cases by a factor of
// 2.5 without impacting the generic case in any significant way.
if (isXY) return new Vector2(point.x, point.y);
if (!isXZ) point = inverseRotation * point;
return new Vector2(point.x, point.z);
}
/// <summary>
/// Transforms from world space to the 'ground' plane of the graph.
/// The transformation is purely a rotation so no scale or offset is used.
/// </summary>
Vector2 IMovementPlane.ToPlane (Vector3 point, out float elevation) {
if (!isXZ) point = inverseRotation * point;
elevation = point.y;
return new Vector2(point.x, point.z);
}
/// <summary>
/// Transforms from the 'ground' plane of the graph to world space.
/// The transformation is purely a rotation so no scale or offset is used.
/// </summary>
Vector3 IMovementPlane.ToWorld (Vector2 point, float elevation) {
return rotation * new Vector3(point.x, elevation, point.y);
}
#endregion
}
}