Compare commits

...

47 Commits

Author SHA1 Message Date
c270a764f2 Merge pull request 'patch' (#22) from develop into master
Reviewed-on: #22
2024-02-02 17:10:54 +01:00
26b1185bca Merge pull request 'fuc j'ai ouvlier un truc' (#21) from feat/output-reader into develop
Reviewed-on: #21
2024-02-02 17:10:31 +01:00
627509a2d7 fuc j'ai ouvlier un truc 2024-02-02 17:07:16 +01:00
01728a2499 Merge pull request 'feat:V1.0' (#8) from develop into master
Reviewed-on: #8
2024-02-02 17:03:23 +01:00
57cf250a03 Merge pull request 'feat/output-reader' (#20) from feat/output-reader into develop
Reviewed-on: #20
Reviewed-by: Nicolas <nicolas.sansd@gmail.com>
2024-02-02 16:43:13 +01:00
9c11f62019 add timer for stepper 2024-02-02 14:39:50 +01:00
7b975bd9a9 add to mutch colis error 2024-02-01 15:38:04 +01:00
35ecce7d5d sync 2024-02-01 11:53:19 +01:00
a105387c21 add nfc reader lib 2024-02-01 11:28:03 +01:00
3f77acd600 feat: 2nd in site test 2024-01-26 11:35:26 +01:00
23258e2682 Merge pull request 'feat: main-algo' (#16) from feat/main-algo into develop
Reviewed-on: #16
Reviewed-by: Nicolas <nicolas.sansd@gmail.com>
2024-01-26 09:47:25 +01:00
f64264631e Merge branch 'develop' of ssh://git.lab-ouest.org:8022/Epitech/T-IOT-901_convoyor into feat/main-algo
# Conflicts:
#	config.ini
#	include/Program.h
#	lib/NFC/src/NfcReader.cpp
#	src/Program.cpp
2024-01-26 09:46:49 +01:00
68a4ab9755 Merge pull request 'feat/m5_lcd' (#19) from feat/m5_lcd into develop
Reviewed-on: #19
2024-01-26 09:40:59 +01:00
69db4ba2b7 Ajout check connexion wifi 2024-01-26 09:39:15 +01:00
45cef130ca Ajout de l'algo 2024-01-25 14:29:08 +01:00
2c22e0a538 Merge remote-tracking branch 'origin/develop' into feat/m5_lcd
# Conflicts:
#	config.ini
#	src/Program.cpp
2024-01-19 16:48:08 +01:00
c498489cbb Merge pull request 'feature/servo_motor_component' (#17) from feature/servo_motor_component into develop
Reviewed-on: #17
Reviewed-by: Nicolas <nicolas.sansd@gmail.com>
2024-01-19 16:46:00 +01:00
c3e50c79b5 Rebase develop 2024-01-19 16:43:37 +01:00
fe671182cd add config.ini 2024-01-19 16:40:31 +01:00
4f3a5bda03 Création du composant LCD, rajout des écrans de logs et du dashboard 2024-01-19 16:40:28 +01:00
15bd7c7741 Retour Clement 2024-01-19 16:40:15 +01:00
dea01d3e84 Refacto servoMotor 2024-01-19 16:40:15 +01:00
9a8a84a59e [ServoMotor] - rework servoMotor for adding speed and easing for movement 2024-01-19 16:40:15 +01:00
027015b33b [feature/ServoMotor] - change servo librarie 2024-01-19 16:40:15 +01:00
f3dc069f3b [feature/Servo_Motor] - add ServoMotorComponent 2024-01-19 16:39:44 +01:00
1e59d9dc46 add config.ini 2024-01-19 16:37:35 +01:00
b3ef581d28 Merge remote-tracking branch 'origin/develop' into feat/main-algo 2024-01-19 12:05:17 +01:00
6e9a59bb00 Merge pull request 'feat: nfc-reader' (#15) from feat/nfc-reader into develop
Reviewed-on: #15
2024-01-19 12:01:17 +01:00
4023cfcb3d NFC: Removing delay function 2024-01-19 11:58:13 +01:00
0e14688f85 Merge branch 'develop' into feat/nfc-reader 2024-01-19 11:54:23 +01:00
032960c168 fix: Addr config 2024-01-19 11:51:59 +01:00
81c9ececf6 Retour Clement 2024-01-19 11:35:25 +01:00
4e8e916e5e NFC: Correcting bug & adding in config 2024-01-19 11:35:21 +01:00
a66882e877 Refacto servoMotor 2024-01-19 09:48:21 +01:00
29c41b6ccc add some affichage idea 2024-01-18 21:06:14 +01:00
04474bfb94 add main algo V1 with mock 2024-01-18 21:02:11 +01:00
463e71fe10 rename nfc reader 2024-01-18 21:01:53 +01:00
76ebc00763 add is idle condition on RGBL lib 2024-01-18 21:01:02 +01:00
8bdd4a9be2 add convoyer len and nfc i2C addr 2024-01-18 21:00:36 +01:00
f947fc7e5f Merge remote-tracking branch 'origin/feat/nfc-reader' into feat/main-algo 2024-01-18 19:53:23 +01:00
b96088c4eb cleanup 2024-01-18 19:32:02 +01:00
d8f0bb07be add idée d'algo 2024-01-18 19:16:23 +01:00
cada4d6e02 NFC: Adding NFC Reader 2024-01-18 16:57:26 +01:00
b7fe429508 Merge pull request 'feat: GRBL-stepper-motor' (#14) from feat/GRBL-stepper into develop
Reviewed-on: #14
2024-01-18 15:46:25 +01:00
3c7aea15a9 [ServoMotor] - rework servoMotor for adding speed and easing for movement 2023-12-08 09:45:07 +01:00
844cbf817c [feature/ServoMotor] - change servo librarie 2023-11-17 09:59:15 +01:00
01b99d9716 [feature/Servo_Motor] - add ServoMotorComponent 2023-11-16 09:55:30 +01:00
24 changed files with 3453 additions and 74 deletions

5
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,5 @@
{
"files.associations": {
"new": "cpp"
}
}

View File

@ -14,7 +14,7 @@ build_flags =
-D MONITOR_SPEED=${config.monitor_speed} -D MONITOR_SPEED=${config.monitor_speed}
; DO NOT TOUCH --- END ; DO NOT TOUCH --- END
-D WAITING_WIFI_DELAY=1000 -D WAITING_WIFI_DELAY=1000
-D TIMEZONE=\"Europe/Paris\"
;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;
;;; stepper config ;;; ;;; stepper config ;;;
;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;
@ -22,4 +22,22 @@ build_flags =
-D STEPER_ACC=200 -D STEPER_ACC=200
;-D STEPER_PAS=755.906 ; = 65mm ;-D STEPER_PAS=755.906 ; = 65mm
-D STEPER_PAS=58 ; = 5mm -D STEPER_PAS=58 ; = 5mm
-D STEPER_SPEED=1000 ; 12000 -D STEPER_SPEED=2700 ;1000 ; 2500
-D GRBL_UPDATE=165 ;update time in ms
;;;;;;;;;;;;;;;;;;;;;;
;;; App config ;;;
;;;;;;;;;;;;;;;;;;;;;;
-D APP_TITLE=\"Warehouse\"
-D APP_VERSION=\"1.0\"
; nfc addr
-D NFC_ADDR=0x28
;;;;;;;;;;;;;;;;;;;;;;
;;; Servo config ;;;
;;;;;;;;;;;;;;;;;;;;;;
-D RIGHT_POS=14 ;18
-D MIDDLE_POS=30 ;32
-D LEFT_POS=52
-D CONVOYER_LEN=80 ;mm

View File

@ -4,7 +4,8 @@ build_flags =
-D API_LIST_PRODUCT_URL=\"/products/\" -D API_LIST_PRODUCT_URL=\"/products/\"
-D API_GET_PRODUCT_URL=\"/products/{id}/\" -D API_GET_PRODUCT_URL=\"/products/{id}/\"
-D API_GET_PRODUCT_STOCK_URL=\"/products/{id}/stock/\" -D API_GET_PRODUCT_STOCK_URL=\"/products/{id}/stock/\"
-D API_GET_PRODUCT_FACTORY_ID=\"/products\"
-D API_LIST_WAREHOUSE_URL=\"/warehouses/\" -D API_LIST_WAREHOUSE_URL=\"/warehouses/\"
-D API_LIST_STOCKS_MOVEMENTS_URL=\"/stockmovements/?sortfield=t.rowid\" -D API_LIST_STOCKS_MOVEMENTS_URL=\"/stockmovements/?sortfield=t.rowid\"
-D API_CREATE_STOCKS_MOVEMENTS_URL=\"/stockmovements/\" -D API_CREATE_STOCKS_MOVEMENTS_URL=\"/stockmovements/\"
-D API_MAX_JSON_SIZE=4096 -D API_MAX_JSON_SIZE=6536

View File

@ -1,9 +1,12 @@
#ifndef PROGRAM_H #ifndef PROGRAM_H
#define PROGRAM_H #define PROGRAM_H
#include "Arduino.h"
#include "DolibarrClient.h" #include "DolibarrClient.h"
#include <M5Stack.h> #include <M5Stack.h>
#include "ServoMotorComponent.h"
#include "NfcReader.h"
#include "GRBL.h"
#include "BigNfcReader.h"
class Program { class Program {
public: public:
@ -16,8 +19,16 @@ public:
* Program WarehouseGUI loop * Program WarehouseGUI loop
*/ */
void loop(); void loop();
void checkNfc();
void checkServo();
void checkWifi();
private: private:
DolibarrClient *client; DolibarrClient *client;
ServoMotorComponent *servo;
NfcReader *nfcReader;
GRBL *grbl;
BigNfcReader* outputReader;
int grblUpdateTime;
}; };
#endif #endif

View File

@ -2,6 +2,7 @@
#include <WiFi.h> #include <WiFi.h>
#include <ArduinoJson.h> #include <ArduinoJson.h>
#include <iostream> #include <iostream>
#include "M5LCD.h"
DolibarrClient::DolibarrClient(struct DolibarrConfig dolibarr_config) : dolibarr(dolibarr_config) { DolibarrClient::DolibarrClient(struct DolibarrConfig dolibarr_config) : dolibarr(dolibarr_config) {
#if defined(DEBUG) #if defined(DEBUG)
@ -29,9 +30,11 @@ int DolibarrClient::login() const {
HTTPClient *client = this->build_url(API_LOGIN_URL); HTTPClient *client = this->build_url(API_LOGIN_URL);
int httpResponseCode = client->GET(); int httpResponseCode = client->GET();
if (httpResponseCode > 0) { if (httpResponseCode > 0) {
StaticJsonDocument<API_MAX_JSON_SIZE> doc; DynamicJsonDocument doc(384);
DeserializationError error = deserializeJson(doc, client->getString().c_str()); DeserializationError error = deserializeJson(doc, client->getString().c_str());
if (error) { if (error) {
Serial.println("ERROR: ");
Serial.println(error.c_str());
delete client; delete client;
return -1; return -1;
} }
@ -56,23 +59,54 @@ std::vector<models::Product> *DolibarrClient::list_products() const {
return nullptr; return nullptr;
} }
models::Product *DolibarrClient::get_product_by_id(const char* id_product) const { models::Product DolibarrClient::get_product_by_factory_id(const char* factory_id) const {
HTTPClient *client = this->build_url(replace_id(API_GET_PRODUCT_URL, id_product).c_str()); HTTPClient *client = this->build_url(replace_id("/products?sortorder=ASC&limit=1&sqlfilters=(t.accountancy_code_sell:like:'{id}')", factory_id).c_str());
if (client->GET() == HTTP_CODE_OK) { if (client->GET() == HTTP_CODE_OK) {
StaticJsonDocument<API_MAX_JSON_SIZE> doc; DynamicJsonDocument doc(6144);
DeserializationError error = deserializeJson(doc, client->getString().c_str()); DeserializationError error = deserializeJson(doc, client->getString().c_str());
if (error) { if (error) {
Serial.println("ERROR: "); Serial.println("ERROR: ");
Serial.println(error.c_str()); Serial.println(error.c_str());
delete client;
return {};
}
for (auto obj : doc.as<JsonArray>()) {
models::Product product;
product.date_creation = obj["date_creation"].as<std::string>();
product.id = obj["id"].as<std::string>();
product.entity = obj["entity"].as<std::string>();
product.stock_reel = obj["stock_reel"].as<std::string>();
product.label = obj["label"].as<std::string>();
product.accountancy_code_sell = obj["accountancy_code_sell"].as<std::string>();
product.accountancy_code_sell_export = obj["accountancy_code_sell_export"].as<std::string>();
product.fk_default_warehouse = obj["fk_default_warehouse"].as<std::string>();
delete client;
return product;
}
delete client;
return {};
}
delete client;
return {};
}
models::Product *DolibarrClient::get_product_by_id(const char* id_product) const {
HTTPClient *client = this->build_url(replace_id(API_GET_PRODUCT_URL, id_product).c_str());
if (client->GET() == HTTP_CODE_OK) {
DynamicJsonDocument doc(6144);
DeserializationError error = deserializeJson(doc, client->getString().c_str());
if (error) {
delete client; delete client;
return nullptr; return nullptr;
} }
auto *product = new models::Product(); auto *product = new models::Product();
product->date_creation = doc["date_creation"]; product->date_creation = doc["date_creation"].as<std::string>();
product->id = doc["id"]; product->id = doc["id"].as<std::string>();
product->entity = doc["entity"]; product->entity = doc["entity"].as<std::string>();
product->stock_reel = doc["stock_reel"]; product->stock_reel = doc["stock_reel"].as<std::string>();
product->label = doc["label"]; product->label = doc["label"].as<std::string>();
product->accountancy_code_sell = doc["accountancy_code_sell"].as<std::string>();
product->accountancy_code_sell_export = doc["accountancy_code_sell_export"].as<std::string>();
delete client; delete client;
return product; return product;
} }
@ -83,7 +117,7 @@ models::Product *DolibarrClient::get_product_by_id(const char* id_product) const
std::vector<models::Warehouse> *DolibarrClient::list_warehouse() const { std::vector<models::Warehouse> *DolibarrClient::list_warehouse() const {
HTTPClient *client = this->build_url(API_LIST_WAREHOUSE_URL); HTTPClient *client = this->build_url(API_LIST_WAREHOUSE_URL);
if (client->GET() == HTTP_CODE_OK) { if (client->GET() == HTTP_CODE_OK) {
StaticJsonDocument<API_MAX_JSON_SIZE> doc; DynamicJsonDocument doc(8192);
DeserializationError error = deserializeJson(doc, client->getString().c_str()); DeserializationError error = deserializeJson(doc, client->getString().c_str());
if (error) { if (error) {
Serial.println("ERROR: "); Serial.println("ERROR: ");
@ -94,7 +128,8 @@ std::vector<models::Warehouse> *DolibarrClient::list_warehouse() const {
auto *warehouses = new std::vector<models::Warehouse>(); auto *warehouses = new std::vector<models::Warehouse>();
for (auto obj : doc.as<JsonArray>()) { for (auto obj : doc.as<JsonArray>()) {
models::Warehouse warehouse = {}; models::Warehouse warehouse = {};
warehouse.id = obj["id"]; warehouse.id = obj["id"].as<std::string>();
warehouse.label = obj["label"].as<std::string>();
warehouses->push_back(warehouse); warehouses->push_back(warehouse);
} }
delete client; delete client;
@ -104,13 +139,15 @@ std::vector<models::Warehouse> *DolibarrClient::list_warehouse() const {
return nullptr; return nullptr;
} }
int DolibarrClient::create_movement(models::CreateProductStock &stock) const { int DolibarrClient::create_movement(models::CreateProductStock stock) const {
HTTPClient *client = this->build_url("API_CREATE_STOCKS_MOVEMENTS_URL"); HTTPClient *client = this->build_url(API_CREATE_STOCKS_MOVEMENTS_URL);
StaticJsonDocument<API_MAX_JSON_SIZE> doc; DynamicJsonDocument doc(4096);
std::string result; std::string result;
doc["product_id"] = stock.product_id; doc["product_id"] = stock.product_id;
doc["warehouse_id"] = stock.warehouse_id; doc["warehouse_id"] = stock.warehouse_id;
doc["qty"] = stock.qty; doc["qty"] = stock.qty;
doc["movementlabel"] = "T-IOT - Warehouse GUI";
doc["movementcode"] = "M" + stock.product_id + "-W" + stock.warehouse_id;
serializeJson(doc, result); serializeJson(doc, result);
Serial.println(result.c_str()); Serial.println(result.c_str());
if (client->POST(result.c_str()) == HTTP_CODE_OK) { if (client->POST(result.c_str()) == HTTP_CODE_OK) {
@ -122,30 +159,5 @@ int DolibarrClient::create_movement(models::CreateProductStock &stock) const {
int DolibarrClient::initialize_http_client() { int DolibarrClient::initialize_http_client() {
this->httpClient = new HTTPClient(); this->httpClient = new HTTPClient();
if (this->login() == 0) {
auto* product = this->get_product_by_id("1");
if (product == nullptr) {
Serial.println("Product is nullptr !");
return -1;
}
Serial.println("Product label: ");
Serial.println(product->label);
auto* warehouses = this->list_warehouse();
if (warehouses == nullptr) {
delete product;
Serial.println("Warehouse is nullptr !");
return -1;
}
Serial.println("Warehouses: ");
models::CreateProductStock product_stock = {product->id, warehouses->at(0).id, "1"};
this->create_movement(product_stock);
for (auto warehouse : *warehouses) {
Serial.println(warehouse.id);
}
delete product;
delete warehouses;
} else {
Serial.println("An Error has occurred while trying to login");
}
return 0; return 0;
} }

View File

@ -24,7 +24,8 @@ public:
std::vector<models::Warehouse> *list_warehouse() const; std::vector<models::Warehouse> *list_warehouse() const;
std::vector<models::Product> *list_products() const; std::vector<models::Product> *list_products() const;
models::Product *get_product_by_id(const char* id_product) const; models::Product *get_product_by_id(const char* id_product) const;
int create_movement(models::CreateProductStock &stock) const; models::Product get_product_by_factory_id(const char* uuid) const;
int create_movement(models::CreateProductStock stock) const;
private: private:
HTTPClient* httpClient{}; HTTPClient* httpClient{};
struct DolibarrConfig dolibarr; struct DolibarrConfig dolibarr;

View File

@ -4,35 +4,39 @@
namespace models { namespace models {
struct Product { struct Product {
const char* id; std::string id;
const char* entity; std::string entity;
const char* ref; std::string ref;
const char* status; std::string status;
const char* date_creation; std::string date_creation;
const char* date_modification; std::string date_modification;
const char* label; std::string label;
const char* description; std::string description;
const char* type; std::string type;
const char* price; std::string accountancy_code_sell;
const char* stock_reel; std::string accountancy_code_sell_export;
const char* seuil_stock_alerte; std::string fk_default_warehouse;
const char* desiredstock; std::string price;
std::string stock_reel;
std::string seuil_stock_alerte;
std::string desiredstock;
}; };
struct ProductStock { struct ProductStock {
const char* id; std::string id;
const char* product_id; std::string product_id;
const char* quantity; std::string quantity;
}; };
struct CreateProductStock { struct CreateProductStock {
const char* product_id; std::string product_id;
const char* warehouse_id; std::string warehouse_id;
const char* qty; std::string qty;
}; };
struct Warehouse { struct Warehouse {
const char* id; std::string id;
std::string label;
}; };
} }

View File

@ -8,6 +8,7 @@ class iGRBL{
public: public:
virtual void init(int speed, double pas, int accel, String mode = "distance") = 0; virtual void init(int speed, double pas, int accel, String mode = "distance") = 0;
virtual void mouveForward(int mm) = 0; virtual void mouveForward(int mm) = 0;
virtual bool isIddle() = 0;
}; };
class GRBL : public iGRBL{ class GRBL : public iGRBL{
@ -15,6 +16,7 @@ public:
GRBL(int grblAddr); GRBL(int grblAddr);
void init(int speed, double pas, int accel, String mode = "distance") override; void init(int speed, double pas, int accel, String mode = "distance") override;
void mouveForward(int mm = 5) override; void mouveForward(int mm = 5) override;
bool isIddle() override;
private: private:
Module_GRBL* grbl; Module_GRBL* grbl;
}; };

View File

@ -32,3 +32,13 @@ void GRBL::mouveForward(int mm){
sprintf(s, "G1 X%d", mm); sprintf(s, "G1 X%d", mm);
this->grbl->sendGcode(s); this->grbl->sendGcode(s);
} }
bool GRBL::isIddle(){
bool sortie = false;
if(this->grbl->readStatus().indexOf("IDLE") != -1){
sortie = true;
}
return sortie;
}

224
lib/M5LCD/src/M5LCD.cpp Normal file
View File

@ -0,0 +1,224 @@
#include "M5LCD.h"
/*
* M5LCD classe
*/
M5LCD::M5LCD() : _current_page(0), _logs() , _debug_loc_y(0), _components_status({COMPONENT_KO, COMPONENT_KO, COMPONENT_KO, COMPONENT_KO, COMPONENT_KO}) {
this->_product_id = std::string("");
this->_product_label = std::string("");
this->_last_nfc = std::string("");
this->_servo_current_position = std::string("");
this->_dolibarr_msg = std::string("");
M5.begin();
M5.Power.begin();
M5.lcd.setBrightness(100);
this->update_page();
}
void M5LCD::update() {
M5.update();
if (M5.BtnB.wasReleased() != 0) {
this->_current_page = (this->_current_page + 1) % LCD_PAGES;
this->update_page();
}
if (this->_current_page == DEBUG_SCREEN && M5.BtnA.wasReleased() != 0 && this->_debug_loc_y < 0) {
this->_debug_loc_y++;
this->update_page();
}
if (this->_current_page == DEBUG_SCREEN && M5.BtnC.wasReleased() != 0) {
this->_debug_loc_y--;
this->update_page();
}
}
void M5LCD::update_page() const {
M5.Lcd.clear();
switch (this->_current_page) {
case 0:
this->show_dashboard();
break;
case 1:
this->show_debug();
break;
case 2:
this->show_config();
break;
}
this->update_pagination();
}
void M5LCD::display_error(const char *str) const {
M5.Lcd.setTextColor(WHITE, RED);
M5.Lcd.setTextSize(1);
M5.Lcd.setCursor(0, 40);
M5.Lcd.println(str);
}
void M5LCD::display_message(const char *str) const {
}
void M5LCD::display_warning(const char *str) const {
}
std::string get_status(AvailableComponentsStatus status) {
return status == COMPONENT_OK ? "OK" : "KO";
}
void draw_component_stats(int x, int y, int fx, int fy, int fw, int fh, const char *name, AvailableComponentsStatus status) {
M5.Lcd.setTextSize(2);
if (status == COMPONENT_OK) {
M5.Lcd.setTextColor(WHITE, GREEN);
} else {
M5.Lcd.setTextColor(WHITE, RED);
}
if (status == COMPONENT_OK) {
M5.Lcd.fillRect(fx, fy, fw, fh, GREEN);
} else {
M5.Lcd.fillRect(fx, fy, fw, fh, RED);
}
M5.Lcd.setCursor(x, y);
M5.Lcd.printf("%s %s", name, get_status(status).c_str());
}
void M5LCD::show_dashboard() const {
draw_component_stats(10, 18, 0, 0, 100, 50, "NFC", _components_status.nfc);
draw_component_stats(150, 18, 110, 0, 210, 50, "DOLIBARR", _components_status.dolibarr);
draw_component_stats(8, 78, 0, 60, 100, 50, "WIFI", _components_status.wifi);
draw_component_stats(112, 78, 110, 60, 100, 50, "SERVO", _components_status.servo);
draw_component_stats(230, 78, 220, 60, 100, 50, "GRBL", _components_status.grbl);
M5.Lcd.drawRect(0, 120, 320, 100, BLUE);
M5.Lcd.setTextColor(WHITE, BLACK);
M5.Lcd.setTextSize(2);
if (!this->_last_nfc.empty()) {
M5.Lcd.setCursor(10, 130);
M5.Lcd.printf("NFC: %s", this->_last_nfc.c_str());
}
if (!this->_product_id.empty() && !this->_product_label.empty()) {
M5.Lcd.setCursor(10, 150);
M5.Lcd.printf("Produit: %s - %s", this->_product_label.c_str(), this->_product_id.c_str());
}
if (!this->_dolibarr_msg.empty()) {
M5.Lcd.setCursor(10, 170);
M5.Lcd.printf("Produit: %s", this->_last_nfc.c_str());
}
if (!this->_servo_current_position.empty()) {
M5.Lcd.setCursor(10, 190);
M5.Lcd.printf("SERVO Posistion: %s", this->_servo_current_position.c_str());
}
M5.Lcd.setTextSize(1);
M5.Lcd.setCursor(0, 230);
M5.Lcd.printf("%s - %s", APP_TITLE, APP_VERSION);
}
void M5LCD::show_debug() const {
M5.Lcd.setTextColor(WHITE, BLACK);
M5.Lcd.setTextSize(1);
int i = 0;
for (auto val : this->_logs) {
M5.Lcd.setCursor(0, i + (this->_debug_loc_y * 10));
M5.Lcd.printf("[%s] - %s", val.get_datetime_format(), val.get_message().c_str());
i+=10;
}
}
void M5LCD::update_pagination() const {
M5.Lcd.setTextSize(1);
M5.Lcd.setTextColor(WHITE, BLACK);
M5.Lcd.setCursor(302, 230);
M5.Lcd.printf("%d/%d", this->_current_page+1, LCD_PAGES);
}
void M5LCD::add_log(const char* str) {
this->_logs.emplace_back(str);
if (this->_current_page == DEBUG_SCREEN) {
this->show_debug();
}
}
void M5LCD::show_config() const {
}
ComponentsStatus M5LCD::get_components() {
return this->_components_status;
}
void M5LCD::set_wifi_status(AvailableComponentsStatus status) {
this->_components_status.wifi = status;
this->update_dashboard();
}
void M5LCD::set_nfc_status(AvailableComponentsStatus status) {
this->_components_status.nfc = status;
this->update_dashboard();
}
void M5LCD::set_grbl_status(AvailableComponentsStatus status) {
this->_components_status.grbl = status;
this->update_dashboard();
}
void M5LCD::set_servo(AvailableComponentsStatus status) {
this->_components_status.servo = status;
this->update_dashboard();
}
void M5LCD::set_dolibarr_status(AvailableComponentsStatus status) {
this->_components_status.dolibarr = status;
this->update_dashboard();
}
void M5LCD::update_dashboard() const {
if (this->_current_page == DASHBOARD_SCREEN) {
this->show_dashboard();
}
}
void M5LCD::set_dolibarr_message(std::string str) {
this->_dolibarr_msg = str;
this->update_dashboard();
}
void M5LCD::set_nfc_message(std::string str) {
this->_last_nfc = str;
this->update_dashboard();
}
void M5LCD::set_product_id(std::string str) {
this->_product_id = str;
this->update_dashboard();
}
void M5LCD::set_servo_message(std::string str) {
this->_servo_current_position = str;
this->update_dashboard();
}
void M5LCD::set_product_label(std::string str) {
this->_product_label = str;
this->update_dashboard();
}
/*
* LogMessage classe
*/
LogMessage::LogMessage(std::string log) {
this->log = log;
this->datetime = time(nullptr);
}
std::string LogMessage::get_message() const {
return this->log;
}
const char *LogMessage::get_datetime_format() const {
void *buff = malloc(20 * sizeof(char));
strftime((char*) buff, 20, "%H:%M:%S", localtime(&this->datetime));
return (char*) buff;
}

84
lib/M5LCD/src/M5LCD.h Normal file
View File

@ -0,0 +1,84 @@
#ifndef T_IOT_901_CONVOYOR_M5LCD_H
#define T_IOT_901_CONVOYOR_M5LCD_H
#include <vector>
#include <ctime>
#include "M5Stack.h"
#define LCD_PAGES 3
#define DASHBOARD_SCREEN 0
#define DEBUG_SCREEN 1
#define CONFIG_SCREEN 2
enum AvailableComponentsStatus {
COMPONENT_OK,
COMPONENT_KO,
COMPONENT_MISSING,
UNKNOWN_ERROR,
};
typedef struct ComponentsStatus {
AvailableComponentsStatus nfc;
AvailableComponentsStatus wifi;
AvailableComponentsStatus dolibarr;
AvailableComponentsStatus servo;
AvailableComponentsStatus grbl;
} ComponentsStatus;
typedef struct MessageToShow {
const char* message;
int color;
} MessageToShow;
class LogMessage {
public:
LogMessage(std::string log);
std::string get_message() const;
const char* get_datetime_format() const;
private:
time_t datetime;
std::string log;
};
class M5LCD {
public:
M5LCD();
void display_message(const char* str) const;
void display_error(const char* str) const;
void display_warning(const char* str) const;
void add_log(const char *str);
void update();
ComponentsStatus get_components();
void set_wifi_status(AvailableComponentsStatus status);
void set_nfc_status(AvailableComponentsStatus status);
void set_grbl_status(AvailableComponentsStatus status);
void set_servo(AvailableComponentsStatus status);
void set_dolibarr_status(AvailableComponentsStatus status);
void set_nfc_message(std::string str);
void set_dolibarr_message(std::string str);
void set_product_label(std::string str);
void set_product_id(std::string str);
void set_servo_message(std::string str);
int _current_page;
private:
void update_page() const;
void show_debug() const;
void show_dashboard() const;
void show_config() const;
void update_pagination() const;
void update_dashboard() const;
int _debug_loc_y;
std::vector<LogMessage> _logs;
ComponentsStatus _components_status;
std::string _last_nfc;
std::string _product_label;
std::string _product_id;
std::string _dolibarr_msg;
std::string _servo_current_position;
};
inline M5LCD *lcdScreen;
#endif //T_IOT_901_CONVOYOR_M5LCD_H

2059
lib/NFC/src/MFRC522_I2C.cpp Normal file

File diff suppressed because it is too large Load Diff

472
lib/NFC/src/MFRC522_I2C.h Normal file
View File

@ -0,0 +1,472 @@
/**
* MFRC522_I2C.h - Library to use ARDUINO RFID MODULE KIT 13.56 MHZ WITH TAGS
*I2C BY AROZCAN MFRC522_I2C.h - Based on ARDUINO RFID MODULE KIT 13.56 MHZ WITH
*TAGS SPI Library BY COOQROBOT. Based on code Dr.Leong ( WWW.B2CQSHOP.COM )
* Created by Miguel Balboa (circuitito.com), Jan, 2012.
* Rewritten by Søren Thing Andersen (access.thing.dk), fall of 2013
*(Translation to English, refactored, comments, anti collision, cascade
*levels.) Extended by Tom Clement with functionality to write to sector 0 of
*UID changeable Mifare cards. Extended by Ahmet Remzi Ozcan with I2C
*functionality. Author: arozcan @
*https://github.com/arozcan/MFRC522-I2C-Library Released into the public
*domain.
*
* Please read this file for an overview and then MFRC522.cpp for comments on
*the specific functions. Search for "mf-rc522" on ebay.com to purchase the
*MF-RC522 board.
*
* There are three hardware components involved:
* 1) The micro controller: An Arduino
* 2) The PCD (short for Proximity Coupling Device): NXP MFRC522 Contactless
*Reader IC 3) The PICC (short for Proximity Integrated Circuit Card): A card or
*tag using the ISO 14443A interface, eg Mifare or NTAG203.
*
* The microcontroller and card reader uses I2C for communication.
* The protocol is described in the MFRC522 datasheet:
*http://www.nxp.com/documents/data_sheet/MFRC522.pdf
*
* The card reader and the tags communicate using a 13.56MHz electromagnetic
*field. The protocol is defined in ISO/IEC 14443-3 Identification cards --
*Contactless integrated circuit cards -- Proximity cards -- Part 3:
*Initialization and anticollision". A free version of the final draft can be
*found at http://wg8.de/wg8n1496_17n3613_Ballot_FCD14443-3.pdf Details are
*found in chapter 6, Type A Initialization and anticollision.
*
* If only the PICC UID is wanted, the above documents has all the needed
*information. To read and write from MIFARE PICCs, the MIFARE protocol is used
*after the PICC has been selected. The MIFARE Classic chips and protocol is
*described in the datasheets: 1K:
*http://www.nxp.com/documents/data_sheet/MF1S503x.pdf 4K:
*http://www.nxp.com/documents/data_sheet/MF1S703x.pdf Mini:
*http://www.idcardmarket.com/download/mifare_S20_datasheet.pdf The MIFARE
*Ultralight chip and protocol is described in the datasheets: Ultralight:
*http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf Ultralight C:
*http://www.nxp.com/documents/short_data_sheet/MF0ICU2_SDS.pdf
*
* MIFARE Classic 1K (MF1S503x):
* Has 16 sectors * 4 blocks/sector * 16 bytes/block = 1024 bytes.
* The blocks are numbered 0-63.
* Block 3 in each sector is the Sector Trailer. See
*http://www.nxp.com/documents/data_sheet/MF1S503x.pdf sections 8.6 and 8.7:
* Bytes 0-5: Key A
* Bytes 6-8: Access Bits
* Bytes 9: User data
* Bytes 10-15: Key B (or user data)
* Block 0 is read-only manufacturer data.
* To access a block, an authentication using a key from the block's sector
*must be performed first. Example: To read from block 10, first authenticate
*using a key from sector 3 (blocks 8-11). All keys are set to FFFFFFFFFFFFh at
*chip delivery. Warning: Please read section 8.7 "Memory Access". It includes
*this text: if the PICC detects a format violation the whole sector is
*irreversibly blocked. To use a block in "value block" mode (for
*Increment/Decrement operations) you need to change the sector trailer. Use
*PICC_SetAccessBits() to calculate the bit patterns. MIFARE Classic 4K
*(MF1S703x): Has (32 sectors * 4 blocks/sector + 8 sectors * 16 blocks/sector)
** 16 bytes/block = 4096 bytes. The blocks are numbered 0-255. The last block
*in each sector is the Sector Trailer like above. MIFARE Classic Mini (MF1 IC
*S20): Has 5 sectors * 4 blocks/sector * 16 bytes/block = 320 bytes. The blocks
*are numbered 0-19. The last block in each sector is the Sector Trailer like
*above.
*
* MIFARE Ultralight (MF0ICU1):
* Has 16 pages of 4 bytes = 64 bytes.
* Pages 0 + 1 is used for the 7-byte UID.
* Page 2 contains the last check digit for the UID, one byte manufacturer
*internal data, and the lock bytes (see
*http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf section 8.5.2) Page 3 is
*OTP, One Time Programmable bits. Once set to 1 they cannot revert to 0. Pages
*4-15 are read/write unless blocked by the lock bytes in page 2. MIFARE
*Ultralight C (MF0ICU2): Has 48 pages of 4 bytes = 192 bytes. Pages 0 + 1 is
*used for the 7-byte UID. Page 2 contains the last check digit for the UID, one
*byte manufacturer internal data, and the lock bytes (see
*http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf section 8.5.2) Page 3 is
*OTP, One Time Programmable bits. Once set to 1 they cannot revert to 0. Pages
*4-39 are read/write unless blocked by the lock bytes in page 2. Page 40 Lock
*bytes Page 41 16 bit one way counter Pages 42-43 Authentication configuration
* Pages 44-47 Authentication key
*/
#ifndef MFRC522_h
#define MFRC522_h
#include <Arduino.h>
#include <Wire.h>
// Firmware data for self-test
// Reference values based on firmware version
// Hint: if needed, you can remove unused self-test data to save flash memory
//
// Version 0.0 (0x90)
// Philips Semiconductors; Preliminary Specification Revision 2.0 - 01 August
// 2005; 16.1 Sefttest
const byte MFRC522_firmware_referenceV0_0[] PROGMEM = {
0x00, 0x87, 0x98, 0x0f, 0x49, 0xFF, 0x07, 0x19, 0xBF, 0x22, 0x30,
0x49, 0x59, 0x63, 0xAD, 0xCA, 0x7F, 0xE3, 0x4E, 0x03, 0x5C, 0x4E,
0x49, 0x50, 0x47, 0x9A, 0x37, 0x61, 0xE7, 0xE2, 0xC6, 0x2E, 0x75,
0x5A, 0xED, 0x04, 0x3D, 0x02, 0x4B, 0x78, 0x32, 0xFF, 0x58, 0x3B,
0x7C, 0xE9, 0x00, 0x94, 0xB4, 0x4A, 0x59, 0x5B, 0xFD, 0xC9, 0x29,
0xDF, 0x35, 0x96, 0x98, 0x9E, 0x4F, 0x30, 0x32, 0x8D};
// Version 1.0 (0x91)
// NXP Semiconductors; Rev. 3.8 - 17 September 2014; 16.1.1 Self test
const byte MFRC522_firmware_referenceV1_0[] PROGMEM = {
0x00, 0xC6, 0x37, 0xD5, 0x32, 0xB7, 0x57, 0x5C, 0xC2, 0xD8, 0x7C,
0x4D, 0xD9, 0x70, 0xC7, 0x73, 0x10, 0xE6, 0xD2, 0xAA, 0x5E, 0xA1,
0x3E, 0x5A, 0x14, 0xAF, 0x30, 0x61, 0xC9, 0x70, 0xDB, 0x2E, 0x64,
0x22, 0x72, 0xB5, 0xBD, 0x65, 0xF4, 0xEC, 0x22, 0xBC, 0xD3, 0x72,
0x35, 0xCD, 0xAA, 0x41, 0x1F, 0xA7, 0xF3, 0x53, 0x14, 0xDE, 0x7E,
0x02, 0xD9, 0x0F, 0xB5, 0x5E, 0x25, 0x1D, 0x29, 0x79};
// Version 2.0 (0x92)
// NXP Semiconductors; Rev. 3.8 - 17 September 2014; 16.1.1 Self test
const byte MFRC522_firmware_referenceV2_0[] PROGMEM = {
0x00, 0xEB, 0x66, 0xBA, 0x57, 0xBF, 0x23, 0x95, 0xD0, 0xE3, 0x0D,
0x3D, 0x27, 0x89, 0x5C, 0xDE, 0x9D, 0x3B, 0xA7, 0x00, 0x21, 0x5B,
0x89, 0x82, 0x51, 0x3A, 0xEB, 0x02, 0x0C, 0xA5, 0x00, 0x49, 0x7C,
0x84, 0x4D, 0xB3, 0xCC, 0xD2, 0x1B, 0x81, 0x5D, 0x48, 0x76, 0xD5,
0x71, 0x61, 0x21, 0xA9, 0x86, 0x96, 0x83, 0x38, 0xCF, 0x9D, 0x5B,
0x6D, 0xDC, 0x15, 0xBA, 0x3E, 0x7D, 0x95, 0x3B, 0x2F};
// Clone
// Fudan Semiconductor FM17522 (0x88)
const byte FM17522_firmware_reference[] PROGMEM = {
0x00, 0xD6, 0x78, 0x8C, 0xE2, 0xAA, 0x0C, 0x18, 0x2A, 0xB8, 0x7A,
0x7F, 0xD3, 0x6A, 0xCF, 0x0B, 0xB1, 0x37, 0x63, 0x4B, 0x69, 0xAE,
0x91, 0xC7, 0xC3, 0x97, 0xAE, 0x77, 0xF4, 0x37, 0xD7, 0x9B, 0x7C,
0xF5, 0x3C, 0x11, 0x8F, 0x15, 0xC3, 0xD7, 0xC1, 0x5B, 0x00, 0x2A,
0xD0, 0x75, 0xDE, 0x9E, 0x51, 0x64, 0xAB, 0x3E, 0xE9, 0x15, 0xB5,
0xAB, 0x56, 0x9A, 0x98, 0x82, 0x26, 0xEA, 0x2A, 0x62};
class MFRC522 {
public:
// MFRC522 registers. Described in chapter 9 of the datasheet.
enum PCD_Register {
// Page 0: Command and status
// 0x00 // reserved for future use
CommandReg = 0x01, // starts and stops command execution
ComIEnReg = 0x02, // enable and disable interrupt request control bits
DivIEnReg = 0x03, // enable and disable interrupt request control bits
ComIrqReg = 0x04, // interrupt request bits
DivIrqReg = 0x05, // interrupt request bits
ErrorReg = 0x06, // error bits showing the error status of the last
// command executed
Status1Reg = 0x07, // communication status bits
Status2Reg = 0x08, // receiver and transmitter status bits
FIFODataReg = 0x09, // input and output of 64 byte FIFO buffer
FIFOLevelReg = 0x0A, // number of bytes stored in the FIFO buffer
WaterLevelReg = 0x0B, // level for FIFO underflow and overflow warning
ControlReg = 0x0C, // miscellaneous control registers
BitFramingReg = 0x0D, // adjustments for bit-oriented frames
CollReg = 0x0E, // bit position of the first bit-collision detected on
// the RF interface
// 0x0F // reserved for future use
// Page 1: Command
// 0x10 // reserved for future use
ModeReg = 0x11, // defines general modes for transmitting and receiving
TxModeReg = 0x12, // defines transmission data rate and framing
RxModeReg = 0x13, // defines reception data rate and framing
TxControlReg = 0x14, // controls the logical behavior of the antenna
// driver pins TX1 and TX2
TxASKReg = 0x15, // controls the setting of the transmission modulation
TxSelReg = 0x16, // selects the internal sources for the antenna driver
RxSelReg = 0x17, // selects internal receiver settings
RxThresholdReg = 0x18, // selects thresholds for the bit decoder
DemodReg = 0x19, // defines demodulator settings
// 0x1A // reserved for future use
// 0x1B // reserved for future use
MfTxReg =
0x1C, // controls some MIFARE communication transmit parameters
MfRxReg =
0x1D, // controls some MIFARE communication receive parameters
// 0x1E // reserved for future use
SerialSpeedReg =
0x1F, // selects the speed of the serial UART interface
// Page 2: Configuration
// 0x20 // reserved for future use
CRCResultRegH =
0x21, // shows the MSB and LSB values of the CRC calculation
CRCResultRegL = 0x22,
// 0x23 // reserved for future use
ModWidthReg = 0x24, // controls the ModWidth setting?
// 0x25 // reserved for future use
RFCfgReg = 0x26, // configures the receiver gain
GsNReg = 0x27, // selects the conductance of the antenna driver pins
// TX1 and TX2 for modulation
CWGsPReg = 0x28, // defines the conductance of the p-driver output
// during periods of no modulation
ModGsPReg = 0x29, // defines the conductance of the p-driver output
// during periods of modulation
TModeReg = 0x2A, // defines settings for the internal timer
TPrescalerReg = 0x2B, // the lower 8 bits of the TPrescaler value. The
// 4 high bits are in TModeReg.
TReloadRegH = 0x2C, // defines the 16-bit timer reload value
TReloadRegL = 0x2D,
TCounterValueRegH = 0x2E, // shows the 16-bit timer value
TCounterValueRegL = 0x2F,
// Page 3: Test Registers
// 0x30 // reserved for future use
TestSel1Reg = 0x31, // general test signal configuration
TestSel2Reg = 0x32, // general test signal configuration
TestPinEnReg = 0x33, // enables pin output driver on pins D1 to D7
TestPinValueReg = 0x34, // defines the values for D1 to D7 when it is
// used as an I/O bus
TestBusReg = 0x35, // shows the status of the internal test bus
AutoTestReg = 0x36, // controls the digital self test
VersionReg = 0x37, // shows the software version
AnalogTestReg = 0x38, // controls the pins AUX1 and AUX2
TestDAC1Reg = 0x39, // defines the test value for TestDAC1
TestDAC2Reg = 0x3A, // defines the test value for TestDAC2
TestADCReg = 0x3B // shows the value of ADC I and Q channels
// 0x3C // reserved for production tests
// 0x3D // reserved for production tests
// 0x3E // reserved for production tests
// 0x3F // reserved for production tests
};
// MFRC522 commands. Described in chapter 10 of the datasheet.
enum PCD_Command {
PCD_Idle = 0x00, // no action, cancels current command execution
PCD_Mem = 0x01, // stores 25 bytes into the internal buffer
PCD_GenerateRandomID = 0x02, // generates a 10-byte random ID number
PCD_CalcCRC =
0x03, // activates the CRC coprocessor or performs a self test
PCD_Transmit = 0x04, // transmits data from the FIFO buffer
PCD_NoCmdChange = 0x07, // no command change, can be used to modify the
// CommandReg register bits without affecting
// the command, for example, the PowerDown bit
PCD_Receive = 0x08, // activates the receiver circuits
PCD_Transceive =
0x0C, // transmits data from FIFO buffer to antenna and
// automatically activates the receiver after transmission
PCD_MFAuthent =
0x0E, // performs the MIFARE standard authentication as a reader
PCD_SoftReset = 0x0F // resets the MFRC522
};
// MFRC522 RxGain[2:0] masks, defines the receiver's signal voltage gain
// factor (on the PCD). Described in 9.3.3.6 / table 98 of the datasheet at
// http://www.nxp.com/documents/data_sheet/MFRC522.pdf
enum PCD_RxGain {
RxGain_18dB = 0x00 << 4, // 000b - 18 dB, minimum
RxGain_23dB = 0x01 << 4, // 001b - 23 dB
RxGain_18dB_2 =
0x02 << 4, // 010b - 18 dB, it seems 010b is a duplicate for 000b
RxGain_23dB_2 =
0x03 << 4, // 011b - 23 dB, it seems 011b is a duplicate for 001b
RxGain_33dB = 0x04 << 4, // 100b - 33 dB, average, and typical default
RxGain_38dB = 0x05 << 4, // 101b - 38 dB
RxGain_43dB = 0x06 << 4, // 110b - 43 dB
RxGain_48dB = 0x07 << 4, // 111b - 48 dB, maximum
RxGain_min =
0x00 << 4, // 000b - 18 dB, minimum, convenience for RxGain_18dB
RxGain_avg =
0x04 << 4, // 100b - 33 dB, average, convenience for RxGain_33dB
RxGain_max =
0x07 << 4 // 111b - 48 dB, maximum, convenience for RxGain_48dB
};
// Commands sent to the PICC.
enum PICC_Command {
// The commands used by the PCD to manage communication with several
// PICCs (ISO 14443-3, Type A, section 6.4)
PICC_CMD_REQA = 0x26, // REQuest command, Type A. Invites PICCs in
// state IDLE to go to READY and prepare for
// anticollision or selection. 7 bit frame.
PICC_CMD_WUPA =
0x52, // Wake-UP command, Type A. Invites PICCs in state IDLE and
// HALT to go to READY(*) and prepare for anticollision or
// selection. 7 bit frame.
PICC_CMD_CT = 0x88, // Cascade Tag. Not really a command, but used
// during anti collision.
PICC_CMD_SEL_CL1 = 0x93, // Anti collision/Select, Cascade Level 1
PICC_CMD_SEL_CL2 = 0x95, // Anti collision/Select, Cascade Level 2
PICC_CMD_SEL_CL3 = 0x97, // Anti collision/Select, Cascade Level 3
PICC_CMD_HLTA = 0x50, // HaLT command, Type A. Instructs an ACTIVE PICC
// to go to state HALT.
// The commands used for MIFARE Classic (from
// http://www.nxp.com/documents/data_sheet/MF1S503x.pdf, Section 9)
// Use PCD_MFAuthent to authenticate access to a sector, then use these
// commands to read/write/modify the blocks on the sector.
// The read/write commands can also be used for MIFARE Ultralight.
PICC_CMD_MF_AUTH_KEY_A = 0x60, // Perform authentication with Key A
PICC_CMD_MF_AUTH_KEY_B = 0x61, // Perform authentication with Key B
PICC_CMD_MF_READ =
0x30, // Reads one 16 byte block from the authenticated sector of
// the PICC. Also used for MIFARE Ultralight.
PICC_CMD_MF_WRITE =
0xA0, // Writes one 16 byte block to the authenticated sector of
// the PICC. Called "COMPATIBILITY WRITE" for MIFARE
// Ultralight.
PICC_CMD_MF_DECREMENT =
0xC0, // Decrements the contents of a block and stores the result
// in the internal data register.
PICC_CMD_MF_INCREMENT =
0xC1, // Increments the contents of a block and stores the result
// in the internal data register.
PICC_CMD_MF_RESTORE = 0xC2, // Reads the contents of a block into the
// internal data register.
PICC_CMD_MF_TRANSFER = 0xB0, // Writes the contents of the internal
// data register to a block.
// The commands used for MIFARE Ultralight (from
// http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf, Section 8.6)
// The PICC_CMD_MF_READ and PICC_CMD_MF_WRITE can also be used for
// MIFARE Ultralight.
PICC_CMD_UL_WRITE = 0xA2 // Writes one 4 byte page to the PICC.
};
// MIFARE constants that does not fit anywhere else
enum MIFARE_Misc {
MF_ACK = 0xA, // The MIFARE Classic uses a 4 bit ACK/NAK. Any other
// value than 0xA is NAK.
MF_KEY_SIZE = 6 // A Mifare Crypto1 key is 6 bytes.
};
// PICC types we can detect. Remember to update PICC_GetTypeName() if you
// add more.
enum PICC_Type {
PICC_TYPE_UNKNOWN = 0,
PICC_TYPE_ISO_14443_4 = 1, // PICC compliant with ISO/IEC 14443-4
PICC_TYPE_ISO_18092 = 2, // PICC compliant with ISO/IEC 18092 (NFC)
PICC_TYPE_MIFARE_MINI = 3, // MIFARE Classic protocol, 320 bytes
PICC_TYPE_MIFARE_1K = 4, // MIFARE Classic protocol, 1KB
PICC_TYPE_MIFARE_4K = 5, // MIFARE Classic protocol, 4KB
PICC_TYPE_MIFARE_UL = 6, // MIFARE Ultralight or Ultralight C
PICC_TYPE_MIFARE_PLUS = 7, // MIFARE Plus
PICC_TYPE_TNP3XXX = 8, // Only mentioned in NXP AN 10833 MIFARE Type
// Identification Procedure
PICC_TYPE_NOT_COMPLETE = 255 // SAK indicates UID is not complete.
};
// Return codes from the functions in this class. Remember to update
// GetStatusCodeName() if you add more.
enum StatusCode {
STATUS_OK = 1, // Success
STATUS_ERROR = 2, // Error in communication
STATUS_COLLISION = 3, // Collission detected
STATUS_TIMEOUT = 4, // Timeout in communication.
STATUS_NO_ROOM = 5, // A buffer is not big enough.
STATUS_INTERNAL_ERROR =
6, // Internal error in the code. Should not happen ;-)
STATUS_INVALID = 7, // Invalid argument.
STATUS_CRC_WRONG = 8, // The CRC_A does not match
STATUS_MIFARE_NACK = 9 // A MIFARE PICC responded with NAK.
};
// A struct used for passing the UID of a PICC.
typedef struct {
byte size; // Number of bytes in the UID. 4, 7 or 10.
byte uidByte[10];
byte sak; // The SAK (Select acknowledge) byte returned from the PICC
// after successful selection.
} Uid;
// A struct used for passing a MIFARE Crypto1 key
typedef struct {
byte keyByte[MF_KEY_SIZE];
} MIFARE_Key;
// Member variables
Uid uid; // Used by PICC_ReadCardSerial().
// Size of the MFRC522 FIFO
static const byte FIFO_SIZE = 64; // The FIFO is 64 bytes.
/////////////////////////////////////////////////////////////////////////////////////
// Functions for setting up the Arduino
/////////////////////////////////////////////////////////////////////////////////////
MFRC522(byte chipAddress);
/////////////////////////////////////////////////////////////////////////////////////
// Basic interface functions for communicating with the MFRC522
/////////////////////////////////////////////////////////////////////////////////////
void PCD_WriteRegister(byte reg, byte value);
void PCD_WriteRegister(byte reg, byte count, byte *values);
byte PCD_ReadRegister(byte reg);
void PCD_ReadRegister(byte reg, byte count, byte *values, byte rxAlign = 0);
void setBitMask(unsigned char reg, unsigned char mask);
void PCD_SetRegisterBitMask(byte reg, byte mask);
void PCD_ClearRegisterBitMask(byte reg, byte mask);
byte PCD_CalculateCRC(byte *data, byte length, byte *result);
/////////////////////////////////////////////////////////////////////////////////////
// Functions for manipulating the MFRC522
/////////////////////////////////////////////////////////////////////////////////////
void PCD_Init();
void PCD_Reset();
void PCD_AntennaOn();
void PCD_AntennaOff();
byte PCD_GetAntennaGain();
void PCD_SetAntennaGain(byte mask);
bool PCD_PerformSelfTest();
/////////////////////////////////////////////////////////////////////////////////////
// Functions for communicating with PICCs
/////////////////////////////////////////////////////////////////////////////////////
byte PCD_TransceiveData(byte *sendData, byte sendLen, byte *backData,
byte *backLen, byte *validBits = NULL,
byte rxAlign = 0, bool checkCRC = false);
byte PCD_CommunicateWithPICC(byte command, byte waitIRq, byte *sendData,
byte sendLen, byte *backData = NULL,
byte *backLen = NULL, byte *validBits = NULL,
byte rxAlign = 0, bool checkCRC = false);
byte PICC_RequestA(byte *bufferATQA, byte *bufferSize);
byte PICC_WakeupA(byte *bufferATQA, byte *bufferSize);
byte PICC_REQA_or_WUPA(byte command, byte *bufferATQA, byte *bufferSize);
byte PICC_Select(Uid *uid, byte validBits = 0);
byte PICC_HaltA();
/////////////////////////////////////////////////////////////////////////////////////
// Functions for communicating with MIFARE PICCs
/////////////////////////////////////////////////////////////////////////////////////
byte PCD_Authenticate(byte command, byte blockAddr, MIFARE_Key *key,
Uid *uid);
void PCD_StopCrypto1();
byte MIFARE_Read(byte blockAddr, byte *buffer, byte *bufferSize);
byte MIFARE_Write(byte blockAddr, byte *buffer, byte bufferSize);
byte MIFARE_Decrement(byte blockAddr, long delta);
byte MIFARE_Increment(byte blockAddr, long delta);
byte MIFARE_Restore(byte blockAddr);
byte MIFARE_Transfer(byte blockAddr);
byte MIFARE_Ultralight_Write(byte page, byte *buffer, byte bufferSize);
byte MIFARE_GetValue(byte blockAddr, long *value);
byte MIFARE_SetValue(byte blockAddr, long value);
/////////////////////////////////////////////////////////////////////////////////////
// Support functions
/////////////////////////////////////////////////////////////////////////////////////
byte PCD_MIFARE_Transceive(byte *sendData, byte sendLen,
bool acceptTimeout = false);
// old function used too much memory, now name moved to flash; if you need
// char, copy from flash to memory
// const char *GetStatusCodeName(byte code);
const __FlashStringHelper *GetStatusCodeName(byte code);
byte PICC_GetType(byte sak);
// old function used too much memory, now name moved to flash; if you need
// char, copy from flash to memory
// const char *PICC_GetTypeName(byte type);
const __FlashStringHelper *PICC_GetTypeName(byte type);
void PICC_DumpToSerial(Uid *uid);
void PICC_DumpMifareClassicToSerial(Uid *uid, byte piccType,
MIFARE_Key *key);
void PICC_DumpMifareClassicSectorToSerial(Uid *uid, MIFARE_Key *key,
byte sector);
void PICC_DumpMifareUltralightToSerial();
void MIFARE_SetAccessBits(byte *accessBitBuffer, byte g0, byte g1, byte g2,
byte g3);
bool MIFARE_OpenUidBackdoor(bool logErrors);
bool MIFARE_SetUid(byte *newUid, byte uidSize, bool logErrors);
bool MIFARE_UnbrickUidSector(bool logErrors);
/////////////////////////////////////////////////////////////////////////////////////
// Convenience functions - does not add extra functionality
/////////////////////////////////////////////////////////////////////////////////////
bool PICC_IsNewCardPresent();
bool PICC_ReadCardSerial();
private:
byte _chipAddress;
byte _resetPowerDownPin; // Arduino pin connected to MFRC522's reset and
// power down input (Pin 6, NRSTPD, active low)
byte MIFARE_TwoStepHelper(byte command, byte blockAddr, long data);
};
#endif

32
lib/NFC/src/NfcReader.cpp Normal file
View File

@ -0,0 +1,32 @@
#include "NfcReader.h"
NfcReader::NfcReader(int i2c_adress)
{
this->mfrc522 = new MFRC522(i2c_adress);
this->mfrc522->PCD_Init();
}
String NfcReader::ReadNfc()
{
this->uid.clear();
if (!this->mfrc522->PICC_IsNewCardPresent() ||
!this->mfrc522->PICC_ReadCardSerial()) {
return "0";
}
for (unsigned int i = 0; i < this->mfrc522->uid.size; i++) {
if (this->mfrc522->uid.uidByte[i] < 0xF) {
this->uid += '0';
this->uid += String(this->mfrc522->uid.uidByte[i], HEX);
} else {
this->uid += String(this->mfrc522->uid.uidByte[i], HEX);
}
}
return (this->uid);
}
bool NfcReader::IsNfcConnected()
{
Wire.beginTransmission(NFC_ADDR);
byte error = Wire.endTransmission();
return error == 0;
}

22
lib/NFC/src/NfcReader.h Normal file
View File

@ -0,0 +1,22 @@
#ifndef NFCREADER_H
#define NFCREADER_H
#include <M5Stack.h>
#include "MFRC522_I2C.h"
#include <string>
class NfcReader {
public:
NfcReader(int i2c_adress);
~NfcReader() = default;
bool IsNfcConnected();
String ReadNfc();
protected:
private:
MFRC522 *mfrc522;
String uid;
};
#endif /* !NFCREADER_H */

View File

@ -0,0 +1,67 @@
#ifndef BIG_NFC_READER_H
#define BIG_NFC_READER_H
#include <Arduino.h>
#include <vector>
#include "TrameList.h"
class BigNfcReader{
public:
BigNfcReader();
/**
* @brief initialise le lecteur NFC
*
* @return true le lecteur NFC est initialisé
* @return false le lecteur NFC n'est pas initialisé (erreur)
*/
bool init();
/**
* @brief rafraichit les données du lecteur NFC
*
*/
void refresh();
/**
* @brief affiche la dernière trame lue
*
*/
void printTrame();
/**
* @brief retourne le nombre de tags lus
*
* @return int nombre de tags lus
*/
int getNbTags();
private:
/**
* @brief convertit un nombre en hexadécimal (a 2 chiffres)
*
* @param number nombre à convertir
* @return String nombre converti
*/
String digitify(int number);
/**
* @brief variable pair/impair pour le type de trame
*
*/
bool pair;
/**
* @brief dernière trame lue
*
*/
std::vector<byte>* trame;
};
#endif

View File

@ -0,0 +1,29 @@
#ifndef TRAM_LIST_H
#define TRAM_LIST_H
#include <Arduino.h>
#include <vector>
const std::vector<byte> SEARCH_TRAM_0 = {0x05, 0x07, 0x01, 0x01, 0x01, 0x00, 0xEB, 0x5F};
const std::vector<byte> INIT_TRAM_0 = {0xFA, 0x05, 0x01, 0xC0, 0x5A, 0xDF};
const std::vector<byte> INIT_TRAM_1 = {0xFA, 0x08, 0x01, 0x00, 0x01, 0x01, 0x01, 0xE1, 0x70};
const std::vector<byte> INIT_TRAM_2 = {0xFA, 0x08, 0x01, 0x40, 0x01, 0x02, 0x01, 0x3E, 0x4C};
const std::vector<byte> INIT_TRAM_3 = {0xFA, 0x08, 0x01, 0x00, 0x01, 0x03, 0x01, 0x51, 0x43};
const std::vector<byte> INIT_TRAM_4 = {0xFA, 0x08, 0x01, 0x40, 0x01, 0x04, 0x01, 0xEE, 0x18};
const std::vector<byte> INIT_TRAM_5 = {0xFA, 0x08, 0x01, 0x00, 0x01, 0x05, 0x01, 0x81, 0x17};
const std::vector<byte> INIT_TRAM_6 = {0xFA, 0x08, 0x01, 0x40, 0x01, 0x06, 0x01, 0x5E, 0x2B};
const std::vector<byte> INIT_TRAM_7 = {0xFA, 0x08, 0x01, 0x00, 0x01, 0x07, 0x01, 0x31, 0x24};
const std::vector<byte> REP_TRAM_0 = {0xFA, 0x05, 0x01, 0xE0, 0x58, 0xFE};
const std::vector<byte> REP_TRAM_1 = {0xFA, 0x17, 0x01, 0x00, 0x01, 0x00, 0x00, 0x01, 0x01, 0x04, 0x00, 0x00, 0x03, 0x01, 0x64, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x95, 0x8A};
const std::vector<byte> REP_TRAM_2 = {0xFA, 0x17, 0x01, 0x40, 0x01, 0x00, 0x00, 0x01, 0x00, 0x09, 0x00, 0xFF, 0x00, 0x10, 0x07, 0x13, 0x01, 0x0E, 0x08, 0x09, 0x0B, 0x00, 0x2D, 0x98};
const std::vector<byte> REP_TRAM_3 = {0xFA, 0x17, 0x01, 0x00, 0x01, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0xE8, 0x03, 0x00, 0x00, 0x00, 0x00, 0x43, 0x83, 0x00, 0x00, 0x00, 0x9A, 0xBF};
const std::vector<byte> REP_TRAM_4 = {0xFA, 0x17, 0x01, 0x40, 0x01, 0x00, 0x00, 0x01, 0x04, 0x01, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xD7, 0x15};
const std::vector<byte> REP_TRAM_5 = {0xFA, 0x17, 0x01, 0x00, 0x01, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x0A, 0x03, 0x0A, 0x00, 0xF6, 0xCD};
const std::vector<byte> REP_TRAM_6 = {0xFA, 0x17, 0x01, 0x40, 0x01, 0x00, 0x00, 0x01, 0x01, 0x00, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0xD4, 0x03};
const std::vector<byte> REP_TRAM_7 = {0xFA, 0x17, 0x01, 0x00, 0x01, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x06, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x52, 0xF6};
const std::vector<byte> READ_TRAM_0 = {0xFA, 0x24, 0x01, 0x00, 0x31, 0x02, 0x07, 0x0E, 0x00, 0x00, 0x04, 0x00, 0x00, 0x0D, 0x00, 0x00, 0x06, 0x00, 0x03, 0x00, 0xFF, 0x00, 0x03, 0x00, 0x02, 0x00, 0x00, 0x02, 0x00, 0x00, 0x01, 0x00, 0x02, 0x00, 0x00, 0x5D, 0x74};
const std::vector<byte> READ_TRAM_1 = {0xFA, 0x24, 0x01, 0x40, 0x31, 0x02, 0x07, 0x0E, 0x00, 0x00, 0x04, 0x00, 0x00, 0x0D, 0x00, 0x00, 0x06, 0x00, 0x03, 0x00, 0xFF, 0x00, 0x03, 0x00, 0x02, 0x00, 0x00, 0x02, 0x00, 0x00, 0x01, 0x00, 0x02, 0x00, 0x00, 0x10, 0x45};
#endif

View File

@ -0,0 +1,75 @@
#include "../include/BigNfcReader.h"
BigNfcReader::BigNfcReader(){
Serial2.begin(115200, SERIAL_8N1, 16, 17);//TODO: mettre le port série en paramètre
this->pair = true;
this->trame = new std::vector<byte>();
}
bool BigNfcReader::init(){
const std::vector<std::vector<byte>> INIT_TRAMES = {INIT_TRAM_0, INIT_TRAM_1, INIT_TRAM_2, INIT_TRAM_3, INIT_TRAM_4, INIT_TRAM_5, INIT_TRAM_6, INIT_TRAM_7};
const std::vector<std::vector<byte>> REP_TRAMES = {REP_TRAM_0, REP_TRAM_1, REP_TRAM_2, REP_TRAM_3, REP_TRAM_4, REP_TRAM_5, REP_TRAM_6, REP_TRAM_7};
int repnb = 0;
for(std::vector<byte> i: INIT_TRAMES){
for(byte j: i){
Serial2.write(j);
}
while (Serial2.available() == 0);
while (Serial2.available() > 0){
for(byte j: REP_TRAMES[repnb]){
if(Serial2.read() != j){
Serial.println("NFC reader init failed");
return false;
}
}
}
repnb++;
}
return true;
}
void BigNfcReader::refresh(){
this->trame->clear();
std::vector<byte> trame = READ_TRAM_0;
if (this->pair){
trame = READ_TRAM_1;
}
this->pair = !this->pair;
for(byte i: trame){
Serial2.write(i);
}
while (Serial2.available() == 0);
while (Serial2.available() > 0){
this->trame->push_back(Serial2.read());
}
}
String BigNfcReader::digitify(int number){
String sortie = "";
if(number <= 0xF){
sortie += '0';
sortie += String(number,HEX);
}else{
sortie += String(number,HEX);
}
return sortie;
}
void BigNfcReader::printTrame(){
for(byte i: *this->trame){
Serial.print(this->digitify(i));
Serial.print(" ");
}
Serial.println();
}
int BigNfcReader::getNbTags(){
return this->trame->at(8);
}

View File

@ -0,0 +1,63 @@
#include "ServoMotorComponent.h"
/////////////////////////////////////////////////////////////////////////////////////
// Functions for setting up the ServoMotor
/////////////////////////////////////////////////////////////////////////////////////
/**
* Constructor.
* Prepares the ServoMotor.
*/
ServoMotorComponent::ServoMotorComponent(int PIN, unsigned long updatePeriod, float step) {
this->PIN = PIN;
this->myservo.attach(PIN);
this->desiredposition = Position::MIDDLE;
this->currentPosition = MIDDLE_POS;
this->lastUpTime = millis();
this->updatePeriod = updatePeriod;
this->step = step;
this->myservo.write(this->PIN, this->currentPosition);
}
/**
* Set the desired position
* @desiredPosition: Give desired position
*/
void ServoMotorComponent::setDesiredPosition(Position desiredPosition) {
switch (desiredPosition) {
case Position::LEFT:
this->desiredposition = LEFT_POS;
break;
case Position::MIDDLE:
this->desiredposition = MIDDLE_POS;
break;
case Position::RIGHT:
this->desiredposition = RIGHT_POS;
break;
default:
break;
}
}
/**
* Write a new servoMotor position when it's necessary
*/
void ServoMotorComponent::refresh() {
if (this->desiredposition == this->currentPosition
|| millis() - this->lastUpTime <= this->updatePeriod) return;
if (this->currentPosition > this->desiredposition) {
this->currentPosition -= this->step;
}
if (this->currentPosition < this->desiredposition) {
this->currentPosition += this->step;
}
this->lastUpTime = millis();
this->myservo.write(this->PIN, this->currentPosition);
}
bool ServoMotorComponent::isConnected() {
return true;
}

View File

@ -0,0 +1,34 @@
#ifndef SERVOMOTOT_COMPONENT_H
#define SERVOMOTOT_COMPONENT_H
#include <Servo.h>
enum Position {
LEFT,
MIDDLE,
RIGHT
};
class ServoMotorComponent
{
public:
ServoMotorComponent(int PIN, unsigned long updatePeriod = 100, float step = 0.1);
void setDesiredPosition(Position desiredPosition);
bool isConnected();
void refresh();
private:
int PIN;
float currentPosition;
float desiredposition;
Servo myservo;
unsigned long lastUpTime;
unsigned long updatePeriod;
float step;
};
#endif //SERVOMOTOT_COMPONENT_H

View File

@ -0,0 +1 @@
#include "WorldTime.h"

View File

@ -0,0 +1,6 @@
#ifndef T_IOT_901_CONVOYOR_WORLDTIME_H
#define T_IOT_901_CONVOYOR_WORLDTIME_H
#endif //T_IOT_901_CONVOYOR_WORLDTIME_H

View File

@ -55,6 +55,7 @@ lib_deps =
m5stack/M5Stack@^0.4.5 ; M5 Lib m5stack/M5Stack@^0.4.5 ; M5 Lib
m5stack/M5GFX@^0.1.9 ; M5 Lib pour le LCD m5stack/M5GFX@^0.1.9 ; M5 Lib pour le LCD
m5stack/Module_GRBL_13.2@^0.0.3 ; M5 Lib pour Stepper (GRBL) m5stack/Module_GRBL_13.2@^0.0.3 ; M5 Lib pour Stepper (GRBL)
dlloydev/ESP32 ESP32S2 AnalogWrite ; Lib pour le Servo Motor
; example: ; example:
; erropix/ESP32 AnalogWrite@0.2 ; erropix/ESP32 AnalogWrite@0.2

View File

@ -1,29 +1,175 @@
#include "Program.h" #include "Program.h"
#include "Arduino.h" #include "Arduino.h"
#include "M5LCD.h"
#include "DolibarrClient.h" #include "DolibarrClient.h"
#include "ServoMotorComponent.h"
#include "NfcReader.h"
#include <Ticker.h>
uint32_t derniereExecution = 0;
const uint32_t intervalle = 1000;
std::vector<models::Warehouse> *warehouses;
int initialize_wifi(WifiConfig wifi) { int initialize_wifi(WifiConfig wifi) {
lcdScreen->add_log("Connecting to the WiFi network...");
WiFiClass::mode(WIFI_STA); //Optional WiFiClass::mode(WIFI_STA); //Optional
WiFi.setSleep(false); WiFi.setSleep(false);
WiFi.begin(wifi.ssid, wifi.password); WiFi.begin(wifi.ssid, wifi.password);
Serial.print("Connecting ");
while(WiFiClass::status() != WL_CONNECTED){
delay(WAITING_WIFI_DELAY);
Serial.print(".");
}
Serial.println("Connected to the WiFi network");
return 0; return 0;
} }
void Program::checkNfc() {
if (this->nfcReader->IsNfcConnected() && lcdScreen->get_components().nfc != COMPONENT_OK) {
lcdScreen->set_nfc_status(COMPONENT_OK);
lcdScreen->add_log("NFC component connected !");
Serial.println("NFC IS CONNECTED !");
} else if (!this->nfcReader->IsNfcConnected() && lcdScreen->get_components().nfc == COMPONENT_OK) {
lcdScreen->set_nfc_status(COMPONENT_KO);
lcdScreen->add_log("NFC component disconnected !");
Serial.println("NFC NOT CONNECTED !");
}
}
void Program::checkServo() {
if (this->servo->isConnected() && lcdScreen->get_components().servo != COMPONENT_OK) {
lcdScreen->set_servo(COMPONENT_OK);
lcdScreen->add_log("SERVO component connected !");
Serial.println("SERVO IS CONNECTED !");
} else if (!this->servo->isConnected() && lcdScreen->get_components().servo == COMPONENT_OK) {
lcdScreen->set_servo(COMPONENT_KO);
lcdScreen->add_log("SERVO component disconnected !");
Serial.println("SERVO NOT CONNECTED !");
}
}
void Program::checkWifi() {
if (WiFiClass::status() == WL_CONNECTED && lcdScreen->get_components().wifi != COMPONENT_OK) {
lcdScreen->add_log("Connected to the WiFi network");
lcdScreen->set_wifi_status(COMPONENT_OK);
struct DolibarrConfig dolibarr = {DOLIBARR_URL, DOLIBARR_API_TOKEN};
this->client = new DolibarrClient(dolibarr);
warehouses = this->client->list_warehouse();
if (warehouses != nullptr) {
lcdScreen->add_log("Warehouses found !");
lcdScreen->set_dolibarr_status(COMPONENT_OK);
for (auto &ware : *warehouses) {
char buffer[50];
sprintf(buffer, "+ Warehouse '%s' (%s)", ware.label.c_str(), ware.id.c_str());
lcdScreen->add_log(buffer);
}
} else {
lcdScreen->add_log("Warehouse not found");
lcdScreen->set_dolibarr_status(COMPONENT_KO);
}
} else if (WiFiClass::status() != WL_CONNECTED && lcdScreen->get_components().wifi == COMPONENT_OK) {
lcdScreen->add_log("Wifi signal lost, reconnecting...");
lcdScreen->set_wifi_status(COMPONENT_KO);
lcdScreen->set_dolibarr_status(COMPONENT_KO);
struct WifiConfig wifi_c = {WIFI_SSID, WIFI_PASSWORD};
initialize_wifi(wifi_c);
}
}
Program::Program() { Program::Program() {
Serial.begin(MONITOR_SPEED); Serial.begin(MONITOR_SPEED);
Wire.begin();
delay(1000);
lcdScreen = new M5LCD();
lcdScreen->add_log("Initialize M5LCD component....");
this->nfcReader = new NfcReader(NFC_ADDR);
this->servo = new ServoMotorComponent(2, 1, 1);
this->servo->setDesiredPosition(Position::MIDDLE);
this->grbl = new GRBL(STEPMOTOR_I2C_ADDR);
this->outputReader = new BigNfcReader();
this->outputReader->init();
this->grblUpdateTime = 0;
lcdScreen->set_grbl_status(COMPONENT_OK);
Wire.begin(21, 22);
grbl->init(STEPER_SPEED, STEPER_PAS, STEPER_ACC);
struct WifiConfig wifi_c = {WIFI_SSID, WIFI_PASSWORD}; struct WifiConfig wifi_c = {WIFI_SSID, WIFI_PASSWORD};
struct DolibarrConfig dolibarr = {DOLIBARR_URL, DOLIBARR_API_TOKEN};
initialize_wifi(wifi_c); initialize_wifi(wifi_c);
this->client = new DolibarrClient(dolibarr);
} }
void Program::loop() { void Program::loop() {
lcdScreen->update();
uint32_t maintenant = millis();
if (maintenant - derniereExecution >= intervalle) {
this->checkServo();
this->checkNfc();
this->checkWifi();
derniereExecution = maintenant;
}
this->servo->refresh();
this->outputReader->refresh();
// Serial.println(this->outputReader->getNbTags());
if(this->outputReader->getNbTags() >= 2){
lcdScreen->set_nfc_message("To mutch colis number detected");
lcdScreen->set_grbl_status(COMPONENT_KO);
}
String nfcId = this->nfcReader->ReadNfc();
//si qqc
if(nfcId != "0"){
if (lcdScreen->get_components().wifi != COMPONENT_OK) {
lcdScreen->add_log("Wifi not connected !");
lcdScreen->set_nfc_message("Cannot send wifi request !");
return;
}
//j'arrète le stepper
//this->grbl->stop(); //FIXME: implemente
//j'affiche le tag lue
Serial.print("new colis in comming : ");
lcdScreen->add_log("new colis detected: ");
lcdScreen->add_log(nfcId.c_str());
lcdScreen->set_nfc_message(nfcId.c_str());
auto product = this->client->get_product_by_factory_id(nfcId.c_str());
Serial.printf("Product: %s\n%s", product.label.c_str(), product.accountancy_code_sell_export.c_str());
lcdScreen->set_product_label(product.label);
lcdScreen->set_product_id(product.id);
/*if (product.fk_default_warehouse == product.accountancy_code_sell_export) {
Serial.printf("Product already in the good warehouse !\n");
return;
}*/
auto ware = std::find_if(warehouses->begin(), warehouses->end(), [&product](models::Warehouse w) {return w.id == product.accountancy_code_sell_export;});
if (ware.base() == nullptr) {
Serial.printf("Warehouse not found !\n");
return;
}
Serial.printf("Product need to go to warehouse %s\n", ware->label.c_str());
this->client->create_movement(models::CreateProductStock{
product.id,
product.fk_default_warehouse,
"-1"
});
if (this->client->create_movement(models::CreateProductStock{
product.id,
ware->id,
"1"
}) == 0) {
Serial.printf("Movement created !\n");
} else {
Serial.printf("Movement cannot be created !\n");
}
if (ware->id == "1") {
this->servo->setDesiredPosition(Position::RIGHT);
lcdScreen->set_servo_message("RIGHT");
} else if (ware->id == "2") {
this->servo->setDesiredPosition(Position::LEFT);
lcdScreen->set_servo_message("LEFT");
} else if (ware->id == "3") {
this->servo->setDesiredPosition(Position::MIDDLE);
lcdScreen->set_servo_message("MIDDLE");
}
this->grbl->mouveForward(CONVOYER_LEN);
} else {
if((this->grbl->isIddle() || (maintenant - this->grblUpdateTime >= GRBL_UPDATE)) && lcdScreen->get_components().grbl == COMPONENT_OK){
this->grblUpdateTime = maintenant;
this->grbl->mouveForward(5);
}
}
if(M5.BtnC.wasReleased() != 0 && lcdScreen->_current_page == DASHBOARD_SCREEN){
lcdScreen->set_grbl_status(COMPONENT_OK);
}
} }