236 lines
5.2 KiB
C++
Raw Normal View History

/*
unipolar.cpp
Part of Grbl_ESP32
copyright (c) 2019 - Bart Dring. This file was intended for use on the ESP32
CPU. Do not use this with Grbl for atMega328P
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
Unipolar Class
This class allows you to control a unipolar motor. Unipolar motors have 5 wires. One
is typically tied to a voltage, while the other 4 are switched to ground in a
sequence
To take a step simply call the step(step, direction) function.
*/
#include "grbl.h"
#ifdef USE_UNIPOLAR
// assign the I/O pins used for each coil of the motors
#ifdef X_UNIPOLAR
Unipolar X_Unipolar(X_PIN_PHASE_0, X_PIN_PHASE_1, X_PIN_PHASE_2, X_PIN_PHASE_3, true);
#endif
#ifdef Y_UNIPOLAR
Unipolar Y_Unipolar(Y_PIN_PHASE_0, Y_PIN_PHASE_1, Y_PIN_PHASE_2, Y_PIN_PHASE_3, true);
#endif
#ifdef Z_UNIPOLAR
Unipolar Z_Unipolar(Z_PIN_PHASE_0, Z_PIN_PHASE_1, Z_PIN_PHASE_2, Z_PIN_PHASE_3, true);
#endif
void unipolar_init(){
#ifdef X_UNIPOLAR
X_Unipolar.init();
grbl_send(CLIENT_SERIAL, "[MSG:X Unipolar]\r\n");
#endif
#ifdef Y_UNIPOLAR
Y_Unipolar.init();
grbl_send(CLIENT_SERIAL, "[MSG:Y Unipolar]\r\n");
#endif
#ifdef Z_UNIPOLAR
Z_Unipolar.init();
grbl_send(CLIENT_SERIAL, "[MSG:Z Unipolar]\r\n");
#endif
}
void unipolar_step(uint8_t step_mask, uint8_t dir_mask)
{
#ifdef X_UNIPOLAR
X_Unipolar.step(step_mask & (1<<X_AXIS), dir_mask & (1<<X_AXIS));
#endif
#ifdef Y_UNIPOLAR
Y_Unipolar.step(step_mask & (1<<Y_AXIS), dir_mask & (1<<Y_AXIS));
#endif
#ifdef Z_UNIPOLAR
Z_Unipolar.step(step_mask & (1<<Z_AXIS), dir_mask & (1<<ZX_AXIS));
#endif
}
void unipolar_disable(bool disable)
{
#ifdef X_UNIPOLAR
X_Unipolar.set_enabled(!disable);
#endif
#ifdef Y_UNIPOLAR
Y_Unipolar.set_enabled(!disable);
#endif
#ifdef Z_UNIPOLAR
Z_Unipolar.set_enabled(!disable);
#endif
}
Unipolar::Unipolar(uint8_t pin_phase0, uint8_t pin_phase1, uint8_t pin_phase2, uint8_t pin_phase3, bool half_step) // constructor
{
_pin_phase0 = pin_phase0;
_pin_phase1 = pin_phase1;
_pin_phase2 = pin_phase2;
_pin_phase3 = pin_phase3;
_half_step = half_step;
}
void Unipolar::init() {
pinMode(_pin_phase0, OUTPUT);
pinMode(_pin_phase1, OUTPUT);
pinMode(_pin_phase2, OUTPUT);
pinMode(_pin_phase3, OUTPUT);
_current_phase = 0;
set_enabled(false);
}
void Unipolar::set_enabled(bool enabled)
{
if (enabled == _enabled)
return; // no change
//grbl_sendf(CLIENT_SERIAL, "[MSG:Enabled...%d]\r\n", enabled);
_enabled = enabled;
if (!enabled) {
digitalWrite(_pin_phase0, 0);
digitalWrite(_pin_phase1, 0);
digitalWrite(_pin_phase2, 0);
digitalWrite(_pin_phase3, 0);
}
}
/*
To take a step set step to true and set the driection
step is included so that st.step_outbits can be used to determine if a
step is required on this axis
*/
void Unipolar::step(bool step, bool dir_forward)
{
uint8_t _phase[8] = {0, 0, 0, 0, 0, 0, 0, 0}; // temporary phase values...all start as off
uint8_t phase_max;
if (_half_step)
phase_max = 7;
else
phase_max = 3;
if (!step)
return; // a step is not required on this interrupt
if (!_enabled)
return; // don't do anything, phase is not changed or lost
if (dir_forward) { // count up
if (_current_phase == phase_max) {
_current_phase = 0;
}
else {
_current_phase++;
}
}
else { // count down
if (_current_phase == 0) {
_current_phase = phase_max;
}
else {
_current_phase--;
}
}
/*
8 Step : A AB B BC C CD D DA
4 Step : AB BC CD DA (Usual application)
Step IN4 IN3 IN2 IN1
A 0 0 0 1
AB 0 0 1 1
B 0 0 1 0
BC 0 1 1 0
C 0 1 0 0
CD 1 1 0 0
D 1 0 0 0
DA 1 0 0 1
*/
if (_half_step) {
switch (_current_phase) {
case 0:
_phase[0] = 1;
break;
case 1:
_phase[0] = 1;
_phase[1] = 1;
break;
case 2:
_phase[1] = 1;
break;
case 3:
_phase[1] = 1;
_phase[2] = 1;
break;
case 4:
_phase[2] = 1;
break;
case 5:
_phase[2] = 1;
_phase[3] = 1;
break;
case 6:
_phase[3] = 1;
break;
case 7:
_phase[3] = 1;
_phase[0] = 1;
break;
}
}
else {
switch (_current_phase) {
case 0:
_phase[0] = 1;
_phase[1] = 1;
break;
case 1:
_phase[1] = 1;
_phase[2] = 1;
break;
case 2:
_phase[2] = 1;
_phase[3] = 1;
break;
case 3:
_phase[3] = 1;
_phase[0] = 1;
break;
}
}
digitalWrite(_pin_phase0, _phase[0]);
digitalWrite(_pin_phase1, _phase[1]);
digitalWrite(_pin_phase2, _phase[2]);
digitalWrite(_pin_phase3, _phase[3]);
}
#endif