/* system.cpp - Header for system level commands and real-time processes Part of Grbl Copyright (c) 2014-2016 Sungeun K. Jeon for Gnea Research LLC 2018 - Bart Dring This file was modified for use on the ESP32 CPU. Do not use this with Grbl for atMega328P Grbl is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Grbl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Grbl. If not, see . */ #include "grbl.h" #include "config.h" xQueueHandle control_sw_queue; // used by control switch debouncing bool debouncing = false; // debouncing in process void system_ini() // Renamed from system_init() due to conflict with esp32 files { // setup control inputs #ifndef IGNORE_CONTROL_PINS #ifdef CONTROL_SAFETY_DOOR_PIN pinMode(CONTROL_SAFETY_DOOR_PIN, INPUT_PULLUP); attachInterrupt(digitalPinToInterrupt(CONTROL_SAFETY_DOOR_PIN), isr_control_inputs, CHANGE); #endif #ifdef CONTROL_RESET_PIN pinMode(CONTROL_RESET_PIN, INPUT_PULLUP); attachInterrupt(digitalPinToInterrupt(CONTROL_RESET_PIN), isr_control_inputs, CHANGE); #endif #ifdef CONTROL_FEED_HOLD_PIN pinMode(CONTROL_FEED_HOLD_PIN, INPUT_PULLUP); attachInterrupt(digitalPinToInterrupt(CONTROL_FEED_HOLD_PIN), isr_control_inputs, CHANGE); #endif #ifdef CONTROL_CYCLE_START_PIN pinMode(CONTROL_CYCLE_START_PIN, INPUT_PULLUP); attachInterrupt(digitalPinToInterrupt(CONTROL_CYCLE_START_PIN), isr_control_inputs, CHANGE); #endif #ifdef MACRO_BUTTON_0_PIN grbl_send(CLIENT_SERIAL, "[MSG:Macro Pin 0]\r\n"); pinMode(MACRO_BUTTON_0_PIN, INPUT_PULLUP); attachInterrupt(digitalPinToInterrupt(MACRO_BUTTON_0_PIN), isr_control_inputs, CHANGE); #endif #ifdef MACRO_BUTTON_1_PIN grbl_send(CLIENT_SERIAL, "[MSG:Macro Pin 1]\r\n"); pinMode(MACRO_BUTTON_1_PIN, INPUT_PULLUP); attachInterrupt(digitalPinToInterrupt(MACRO_BUTTON_1_PIN), isr_control_inputs, CHANGE); #endif #ifdef MACRO_BUTTON_2_PIN grbl_send(CLIENT_SERIAL, "[MSG:Macro Pin 2]\r\n"); pinMode(MACRO_BUTTON_2_PIN, INPUT_PULLUP); attachInterrupt(digitalPinToInterrupt(MACRO_BUTTON_2_PIN), isr_control_inputs, CHANGE); #endif #ifdef MACRO_BUTTON_3_PIN grbl_send(CLIENT_SERIAL, "[MSG:Macro Pin 3]\r\n"); pinMode(MACRO_BUTTON_3_PIN, INPUT_PULLUP); attachInterrupt(digitalPinToInterrupt(MACRO_BUTTON_3_PIN), isr_control_inputs, CHANGE); #endif #ifdef ENABLE_CONTROL_SW_DEBOUNCE // setup task used for debouncing control_sw_queue = xQueueCreate(10, sizeof( int )); xTaskCreate(controlCheckTask, "controlCheckTask", 2048, NULL, 5, // priority NULL); #endif #endif //customize pin definition if needed #if (GRBL_SPI_SS != -1) || (GRBL_SPI_MISO != -1) || (GRBL_SPI_MOSI != -1) || (GRBL_SPI_SCK != -1) SPI.begin(GRBL_SPI_SCK, GRBL_SPI_MISO, GRBL_SPI_MOSI, GRBL_SPI_SS); #endif // Setup USER_DIGITAL_PINs controlled by M62 and M63 #ifdef USER_DIGITAL_PIN_1 pinMode(USER_DIGITAL_PIN_1, OUTPUT); sys_io_control(1<<1, false); // turn off #endif #ifdef USER_DIGITAL_PIN_2 pinMode(USER_DIGITAL_PIN_2, OUTPUT); sys_io_control(1<<2, false); // turn off #endif #ifdef USER_DIGITAL_PIN_3 pinMode(USER_DIGITAL_PIN_3, OUTPUT); sys_io_control(1<<3, false); // turn off #endif #ifdef USER_DIGITAL_PIN_4 pinMode(USER_DIGITAL_PIN_4, OUTPUT); sys_io_control(1<<4, false); // turn off #endif } #ifdef ENABLE_CONTROL_SW_DEBOUNCE // this is the debounce task void controlCheckTask(void *pvParameters) { while(true) { int evt; xQueueReceive(control_sw_queue, &evt, portMAX_DELAY); // block until receive queue vTaskDelay(CONTROL_SW_DEBOUNCE_PERIOD); // delay a while uint8_t pin = system_control_get_state(); if (pin) { system_exec_control_pin(pin); } debouncing = false; } } #endif void IRAM_ATTR isr_control_inputs() { #ifdef ENABLE_CONTROL_SW_DEBOUNCE // we will start a task that will recheck the switches after a small delay int evt; if (!debouncing) { // prevent resending until debounce is done debouncing = true; xQueueSendFromISR(control_sw_queue, &evt, NULL); } #else uint8_t pin = system_control_get_state(); system_exec_control_pin(pin); #endif } // Executes user startup script, if stored. void system_execute_startup(char *line) { uint8_t n; for (n=0; n < N_STARTUP_LINE; n++) { if (!(settings_read_startup_line(n, line))) { line[0] = 0; report_execute_startup_message(line,STATUS_SETTING_READ_FAIL, CLIENT_SERIAL); } else { if (line[0] != 0) { uint8_t status_code = gc_execute_line(line, CLIENT_SERIAL); report_execute_startup_message(line,status_code, CLIENT_SERIAL); } } } } // Directs and executes one line of formatted input from protocol_process. While mostly // incoming streaming g-code blocks, this also executes Grbl internal commands, such as // settings, initiating the homing cycle, and toggling switch states. This differs from // the realtime command module by being susceptible to when Grbl is ready to execute the // next line during a cycle, so for switches like block delete, the switch only effects // the lines that are processed afterward, not necessarily real-time during a cycle, // since there are motions already stored in the buffer. However, this 'lag' should not // be an issue, since these commands are not typically used during a cycle. uint8_t system_execute_line(char *line, uint8_t client) { uint8_t char_counter = 1; uint8_t helper_var = 0; // Helper variable float parameter, value; switch( line[char_counter] ) { case 0 : report_grbl_help(client); break; case 'J' : // Jogging // Execute only if in IDLE or JOG states. if (sys.state != STATE_IDLE && sys.state != STATE_JOG) { return(STATUS_IDLE_ERROR); } if(line[2] != '=') { return(STATUS_INVALID_STATEMENT); } return(gc_execute_line(line, client)); // NOTE: $J= is ignored inside g-code parser and used to detect jog motions. break; case '$': case 'G': case 'C': case 'X': if ( line[2] != 0 ) { return(STATUS_INVALID_STATEMENT); } switch( line[1] ) { case '$' : // Prints Grbl settings if ( sys.state & (STATE_CYCLE | STATE_HOLD) ) { return(STATUS_IDLE_ERROR); } // Block during cycle. Takes too long to print. else { report_grbl_settings(client); } break; case 'G' : // Prints gcode parser state // TODO: Move this to realtime commands for GUIs to request this data during suspend-state. report_gcode_modes(client); break; case 'C' : // Set check g-code mode [IDLE/CHECK] // Perform reset when toggling off. Check g-code mode should only work if Grbl // is idle and ready, regardless of alarm locks. This is mainly to keep things // simple and consistent. if ( sys.state == STATE_CHECK_MODE ) { mc_reset(); report_feedback_message(MESSAGE_DISABLED); } else { if (sys.state) { return(STATUS_IDLE_ERROR); } // Requires no alarm mode. sys.state = STATE_CHECK_MODE; report_feedback_message(MESSAGE_ENABLED); } break; case 'X' : // Disable alarm lock [ALARM] if (sys.state == STATE_ALARM) { // Block if safety door is ajar. if (system_check_safety_door_ajar()) { return(STATUS_CHECK_DOOR); } report_feedback_message(MESSAGE_ALARM_UNLOCK); sys.state = STATE_IDLE; // Don't run startup script. Prevents stored moves in startup from causing accidents. } // Otherwise, no effect. break; } break; default : // Block any system command that requires the state as IDLE/ALARM. (i.e. EEPROM, homing) if ( !(sys.state == STATE_IDLE || sys.state == STATE_ALARM) ) { return(STATUS_IDLE_ERROR); } switch( line[1] ) { case '#' : // Print Grbl NGC parameters if ( line[2] != 0 ) { return(STATUS_INVALID_STATEMENT); } else { report_ngc_parameters(client); } break; case 'H' : // Perform homing cycle [IDLE/ALARM] $H if (bit_isfalse(settings.flags,BITFLAG_HOMING_ENABLE)) {return(STATUS_SETTING_DISABLED); } if (system_check_safety_door_ajar()) { return(STATUS_CHECK_DOOR); } // Block if safety door is ajar. sys.state = STATE_HOMING; // Set system state variable if (line[2] == 0) { mc_homing_cycle(HOMING_CYCLE_ALL); #ifdef HOMING_SINGLE_AXIS_COMMANDS } else if (line[3] == 0) { switch (line[2]) { case 'X': mc_homing_cycle(HOMING_CYCLE_X); break; case 'Y': mc_homing_cycle(HOMING_CYCLE_Y); break; case 'Z': mc_homing_cycle(HOMING_CYCLE_Z); break; case 'A': mc_homing_cycle(HOMING_CYCLE_A); break; case 'B': mc_homing_cycle(HOMING_CYCLE_B); break; case 'C': mc_homing_cycle(HOMING_CYCLE_C); break; default: return(STATUS_INVALID_STATEMENT); } #endif } else { return(STATUS_INVALID_STATEMENT); } if (!sys.abort) { // Execute startup scripts after successful homing. sys.state = STATE_IDLE; // Set to IDLE when complete. st_go_idle(); // Set steppers to the settings idle state before returning. if (line[2] == 0) { system_execute_startup(line); } } break; case 'S' : // Puts Grbl to sleep [IDLE/ALARM] if ((line[2] != 'L') || (line[3] != 'P') || (line[4] != 0)) { return(STATUS_INVALID_STATEMENT); } system_set_exec_state_flag(EXEC_SLEEP); // Set to execute sleep mode immediately break; case 'I' : // Print or store build info. [IDLE/ALARM] if ( line[++char_counter] == 0 ) { settings_read_build_info(line); report_build_info(line, client); #ifdef ENABLE_BUILD_INFO_WRITE_COMMAND } else { // Store startup line [IDLE/ALARM] if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); } helper_var = char_counter; // Set helper variable as counter to start of user info line. do { line[char_counter-helper_var] = line[char_counter]; } while (line[char_counter++] != 0); settings_store_build_info(line); #endif } break; case 'R' : // Restore defaults [IDLE/ALARM] if ((line[2] != 'S') || (line[3] != 'T') || (line[4] != '=') || (line[6] != 0)) { return(STATUS_INVALID_STATEMENT); } switch (line[5]) { #ifdef ENABLE_RESTORE_EEPROM_DEFAULT_SETTINGS case '$': settings_restore(SETTINGS_RESTORE_DEFAULTS); break; #endif #ifdef ENABLE_RESTORE_EEPROM_CLEAR_PARAMETERS case '#': settings_restore(SETTINGS_RESTORE_PARAMETERS); break; #endif #ifdef ENABLE_RESTORE_EEPROM_WIPE_ALL case '*': settings_restore(SETTINGS_RESTORE_ALL); break; #endif #if defined(ENABLE_BLUETOOTH) || defined(ENABLE_WIFI) case '@': settings_restore(SETTINGS_RESTORE_WIFI_SETTINGS); break; #endif default: return(STATUS_INVALID_STATEMENT); } report_feedback_message(MESSAGE_RESTORE_DEFAULTS); mc_reset(); // Force reset to ensure settings are initialized correctly. break; case 'N' : // Startup lines. [IDLE/ALARM] if ( line[++char_counter] == 0 ) { // Print startup lines for (helper_var=0; helper_var < N_STARTUP_LINE; helper_var++) { if (!(settings_read_startup_line(helper_var, line))) { report_status_message(STATUS_SETTING_READ_FAIL, CLIENT_SERIAL); } else { report_startup_line(helper_var,line, client); } } break; } else { // Store startup line [IDLE Only] Prevents motion during ALARM. if (sys.state != STATE_IDLE) { return(STATUS_IDLE_ERROR); } // Store only when idle. helper_var = true; // Set helper_var to flag storing method. // No break. Continues into default: to read remaining command characters. } default : // Storing setting methods [IDLE/ALARM] if(!read_float(line, &char_counter, ¶meter)) { return(STATUS_BAD_NUMBER_FORMAT); } if(line[char_counter++] != '=') { return(STATUS_INVALID_STATEMENT); } if (helper_var) { // Store startup line // Prepare sending gcode block to gcode parser by shifting all characters helper_var = char_counter; // Set helper variable as counter to start of gcode block do { line[char_counter-helper_var] = line[char_counter]; } while (line[char_counter++] != 0); // Execute gcode block to ensure block is valid. helper_var = gc_execute_line(line, CLIENT_SERIAL); // Set helper_var to returned status code. if (helper_var) { return(helper_var); } else { helper_var = trunc(parameter); // Set helper_var to int value of parameter settings_store_startup_line(helper_var,line); } } else { // Store global setting. if(!read_float(line, &char_counter, &value)) { return(STATUS_BAD_NUMBER_FORMAT); } if((line[char_counter] != 0) || (parameter > 255)) { return(STATUS_INVALID_STATEMENT); } return(settings_store_global_setting((uint8_t)parameter, value)); } } } return(STATUS_OK); // If '$' command makes it to here, then everything's ok. } // Returns if safety door is ajar(T) or closed(F), based on pin state. uint8_t system_check_safety_door_ajar() { #ifdef ENABLE_SAFETY_DOOR_INPUT_PIN return(system_control_get_state() & CONTROL_PIN_INDEX_SAFETY_DOOR); #else return(false); // Input pin not enabled, so just return that it's closed. #endif } // Special handlers for setting and clearing Grbl's real-time execution flags. void system_set_exec_state_flag(uint8_t mask) { // TODO uint8_t sreg = SREG; // TODO cli(); sys_rt_exec_state |= (mask); // TODO SREG = sreg; } void system_clear_exec_state_flag(uint8_t mask) { //uint8_t sreg = SREG; //cli(); sys_rt_exec_state &= ~(mask); //SREG = sreg; } void system_set_exec_alarm(uint8_t code) { //uint8_t sreg = SREG; //cli(); sys_rt_exec_alarm = code; //SREG = sreg; } void system_clear_exec_alarm() { //uint8_t sreg = SREG; //cli(); sys_rt_exec_alarm = 0; //SREG = sreg; } void system_set_exec_motion_override_flag(uint8_t mask) { //uint8_t sreg = SREG; //cli(); sys_rt_exec_motion_override |= (mask); //SREG = sreg; } void system_set_exec_accessory_override_flag(uint8_t mask) { //uint8_t sreg = SREG; //cli(); sys_rt_exec_accessory_override |= (mask); //SREG = sreg; } void system_clear_exec_motion_overrides() { //uint8_t sreg = SREG; //cli(); sys_rt_exec_motion_override = 0; //SREG = sreg; } void system_clear_exec_accessory_overrides() { //uint8_t sreg = SREG; //cli(); sys_rt_exec_accessory_override = 0; //SREG = sreg; } void system_flag_wco_change() { #ifdef FORCE_BUFFER_SYNC_DURING_WCO_CHANGE protocol_buffer_synchronize(); #endif sys.report_wco_counter = 0; } // Returns machine position of axis 'idx'. Must be sent a 'step' array. // NOTE: If motor steps and machine position are not in the same coordinate frame, this function // serves as a central place to compute the transformation. float system_convert_axis_steps_to_mpos(int32_t *steps, uint8_t idx) { float pos; #ifdef COREXY if (idx==X_AXIS) { pos = (float)system_convert_corexy_to_x_axis_steps(steps) / settings.steps_per_mm[idx]; } else if (idx==Y_AXIS) { pos = (float)system_convert_corexy_to_y_axis_steps(steps) / settings.steps_per_mm[idx]; } else { pos = steps[idx]/settings.steps_per_mm[idx]; } #else pos = steps[idx]/settings.steps_per_mm[idx]; #endif return(pos); } void system_convert_array_steps_to_mpos(float *position, int32_t *steps) { uint8_t idx; for (idx=0; idx -settings.max_travel[idx]) { return(true); } } else { if (target[idx] > 0 || target[idx] < settings.max_travel[idx]) { return(true); } } #else // NOTE: max_travel is stored as negative #ifdef HOMING_FORCE_POSITIVE_SPACE if (target[idx] < 0 || target[idx] > -settings.max_travel[idx]) { return(true); } #else if (target[idx] > 0 || target[idx] < settings.max_travel[idx]) { return(true); } #endif #endif } return(false); } // Returns control pin state as a uint8 bitfield. Each bit indicates the input pin state, where // triggered is 1 and not triggered is 0. Invert mask is applied. Bitfield organization is // defined by the CONTROL_PIN_INDEX in the header file. uint8_t system_control_get_state() { uint8_t defined_pin_mask = 0; // a mask of defined pins #ifdef IGNORE_CONTROL_PINS return 0; #endif uint8_t control_state = 0; #ifdef CONTROL_SAFETY_DOOR_PIN defined_pin_mask |= CONTROL_PIN_INDEX_SAFETY_DOOR; if (digitalRead(CONTROL_SAFETY_DOOR_PIN)) { control_state |= CONTROL_PIN_INDEX_SAFETY_DOOR; } #endif #ifdef CONTROL_RESET_PIN defined_pin_mask |= CONTROL_PIN_INDEX_RESET; if (digitalRead(CONTROL_RESET_PIN)) { control_state |= CONTROL_PIN_INDEX_RESET; } #endif #ifdef CONTROL_FEED_HOLD_PIN defined_pin_mask |= CONTROL_PIN_INDEX_FEED_HOLD; if (digitalRead(CONTROL_FEED_HOLD_PIN)) { control_state |= CONTROL_PIN_INDEX_FEED_HOLD; } #endif #ifdef CONTROL_CYCLE_START_PIN defined_pin_mask |= CONTROL_PIN_INDEX_CYCLE_START; if (digitalRead(CONTROL_CYCLE_START_PIN)) { control_state |= CONTROL_PIN_INDEX_CYCLE_START; } #endif #ifdef MACRO_BUTTON_0_PIN defined_pin_mask |= CONTROL_PIN_INDEX_MACRO_0; if (digitalRead(MACRO_BUTTON_0_PIN)) { control_state |= CONTROL_PIN_INDEX_MACRO_0; } #endif #ifdef MACRO_BUTTON_1_PIN defined_pin_mask |= CONTROL_PIN_INDEX_MACRO_1; if (digitalRead(MACRO_BUTTON_1_PIN)) { control_state |= CONTROL_PIN_INDEX_MACRO_1; } #endif #ifdef MACRO_BUTTON_2_PIN defined_pin_mask |= CONTROL_PIN_INDEX_MACRO_2; if (digitalRead(MACRO_BUTTON_2_PIN)) { control_state |= CONTROL_PIN_INDEX_MACRO_2; } #endif #ifdef MACRO_BUTTON_3_PIN defined_pin_mask |= CONTROL_PIN_INDEX_MACRO_3; if (digitalRead(MACRO_BUTTON_3_PIN)) { control_state |= CONTROL_PIN_INDEX_MACRO_3; } #endif #ifdef INVERT_CONTROL_PIN_MASK control_state ^= (INVERT_CONTROL_PIN_MASK & defined_pin_mask); #endif return(control_state); } // Returns limit pin mask according to Grbl internal axis indexing. uint8_t get_limit_pin_mask(uint8_t axis_idx) { if ( axis_idx == X_AXIS ) { return((1<