236 lines
5.2 KiB
C++
236 lines
5.2 KiB
C++
/*
|
||
unipolar.cpp
|
||
Part of Grbl_ESP32
|
||
|
||
copyright (c) 2019 - Bart Dring. This file was intended for use on the ESP32
|
||
CPU. Do not use this with Grbl for atMega328P
|
||
|
||
Grbl is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
Grbl is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||
|
||
Unipolar Class
|
||
|
||
This class allows you to control a unipolar motor. Unipolar motors have 5 wires. One
|
||
is typically tied to a voltage, while the other 4 are switched to ground in a
|
||
sequence
|
||
|
||
To take a step simply call the step(step, direction) function.
|
||
|
||
*/
|
||
#include "grbl.h"
|
||
|
||
#ifdef USE_UNIPOLAR
|
||
|
||
// assign the I/O pins used for each coil of the motors
|
||
#ifdef X_UNIPOLAR
|
||
Unipolar X_Unipolar(X_PIN_PHASE_0, X_PIN_PHASE_1, X_PIN_PHASE_2, X_PIN_PHASE_3, true);
|
||
#endif
|
||
|
||
#ifdef Y_UNIPOLAR
|
||
Unipolar Y_Unipolar(Y_PIN_PHASE_0, Y_PIN_PHASE_1, Y_PIN_PHASE_2, Y_PIN_PHASE_3, true);
|
||
#endif
|
||
|
||
#ifdef Z_UNIPOLAR
|
||
Unipolar Z_Unipolar(Z_PIN_PHASE_0, Z_PIN_PHASE_1, Z_PIN_PHASE_2, Z_PIN_PHASE_3, true);
|
||
#endif
|
||
|
||
void unipolar_init(){
|
||
#ifdef X_UNIPOLAR
|
||
X_Unipolar.init();
|
||
grbl_send(CLIENT_SERIAL, "[MSG:X Unipolar]\r\n");
|
||
#endif
|
||
#ifdef Y_UNIPOLAR
|
||
Y_Unipolar.init();
|
||
grbl_send(CLIENT_SERIAL, "[MSG:Y Unipolar]\r\n");
|
||
#endif
|
||
#ifdef Z_UNIPOLAR
|
||
Z_Unipolar.init();
|
||
grbl_send(CLIENT_SERIAL, "[MSG:Z Unipolar]\r\n");
|
||
#endif
|
||
}
|
||
|
||
void unipolar_step(uint8_t step_mask, uint8_t dir_mask)
|
||
{
|
||
#ifdef X_UNIPOLAR
|
||
X_Unipolar.step(step_mask & (1<<X_AXIS), dir_mask & (1<<X_AXIS));
|
||
#endif
|
||
#ifdef Y_UNIPOLAR
|
||
Y_Unipolar.step(step_mask & (1<<Y_AXIS), dir_mask & (1<<Y_AXIS));
|
||
#endif
|
||
#ifdef Z_UNIPOLAR
|
||
Z_Unipolar.step(step_mask & (1<<Z_AXIS), dir_mask & (1<<ZX_AXIS));
|
||
#endif
|
||
}
|
||
|
||
void unipolar_disable(bool disable)
|
||
{
|
||
#ifdef X_UNIPOLAR
|
||
X_Unipolar.set_enabled(!disable);
|
||
#endif
|
||
#ifdef Y_UNIPOLAR
|
||
Y_Unipolar.set_enabled(!disable);
|
||
#endif
|
||
#ifdef Z_UNIPOLAR
|
||
Z_Unipolar.set_enabled(!disable);
|
||
#endif
|
||
}
|
||
|
||
|
||
Unipolar::Unipolar(uint8_t pin_phase0, uint8_t pin_phase1, uint8_t pin_phase2, uint8_t pin_phase3, bool half_step) // constructor
|
||
{
|
||
_pin_phase0 = pin_phase0;
|
||
_pin_phase1 = pin_phase1;
|
||
_pin_phase2 = pin_phase2;
|
||
_pin_phase3 = pin_phase3;
|
||
_half_step = half_step;
|
||
}
|
||
|
||
void Unipolar::init() {
|
||
pinMode(_pin_phase0, OUTPUT);
|
||
pinMode(_pin_phase1, OUTPUT);
|
||
pinMode(_pin_phase2, OUTPUT);
|
||
pinMode(_pin_phase3, OUTPUT);
|
||
|
||
_current_phase = 0;
|
||
set_enabled(false);
|
||
}
|
||
|
||
void Unipolar::set_enabled(bool enabled)
|
||
{
|
||
if (enabled == _enabled)
|
||
return; // no change
|
||
|
||
//grbl_sendf(CLIENT_SERIAL, "[MSG:Enabled...%d]\r\n", enabled);
|
||
|
||
_enabled = enabled;
|
||
|
||
if (!enabled) {
|
||
digitalWrite(_pin_phase0, 0);
|
||
digitalWrite(_pin_phase1, 0);
|
||
digitalWrite(_pin_phase2, 0);
|
||
digitalWrite(_pin_phase3, 0);
|
||
}
|
||
}
|
||
|
||
/*
|
||
To take a step set step to true and set the driection
|
||
|
||
step is included so that st.step_outbits can be used to determine if a
|
||
step is required on this axis
|
||
*/
|
||
void Unipolar::step(bool step, bool dir_forward)
|
||
{
|
||
uint8_t _phase[8] = {0, 0, 0, 0, 0, 0, 0, 0}; // temporary phase values...all start as off
|
||
uint8_t phase_max;
|
||
|
||
if (_half_step)
|
||
phase_max = 7;
|
||
else
|
||
phase_max = 3;
|
||
|
||
if (!step)
|
||
return; // a step is not required on this interrupt
|
||
|
||
if (!_enabled)
|
||
return; // don't do anything, phase is not changed or lost
|
||
|
||
if (dir_forward) { // count up
|
||
if (_current_phase == phase_max) {
|
||
_current_phase = 0;
|
||
}
|
||
else {
|
||
_current_phase++;
|
||
}
|
||
}
|
||
else { // count down
|
||
if (_current_phase == 0) {
|
||
_current_phase = phase_max;
|
||
}
|
||
else {
|
||
_current_phase--;
|
||
}
|
||
}
|
||
|
||
/*
|
||
8 Step : A – AB – B – BC – C – CD – D – DA
|
||
4 Step : AB – BC – CD – DA (Usual application)
|
||
|
||
Step IN4 IN3 IN2 IN1
|
||
A 0 0 0 1
|
||
AB 0 0 1 1
|
||
B 0 0 1 0
|
||
BC 0 1 1 0
|
||
C 0 1 0 0
|
||
CD 1 1 0 0
|
||
D 1 0 0 0
|
||
DA 1 0 0 1
|
||
*/
|
||
if (_half_step) {
|
||
switch (_current_phase) {
|
||
case 0:
|
||
_phase[0] = 1;
|
||
break;
|
||
case 1:
|
||
_phase[0] = 1;
|
||
_phase[1] = 1;
|
||
break;
|
||
case 2:
|
||
_phase[1] = 1;
|
||
break;
|
||
case 3:
|
||
_phase[1] = 1;
|
||
_phase[2] = 1;
|
||
break;
|
||
case 4:
|
||
_phase[2] = 1;
|
||
break;
|
||
case 5:
|
||
_phase[2] = 1;
|
||
_phase[3] = 1;
|
||
break;
|
||
case 6:
|
||
_phase[3] = 1;
|
||
break;
|
||
case 7:
|
||
_phase[3] = 1;
|
||
_phase[0] = 1;
|
||
break;
|
||
}
|
||
}
|
||
else {
|
||
switch (_current_phase) {
|
||
case 0:
|
||
_phase[0] = 1;
|
||
_phase[1] = 1;
|
||
break;
|
||
case 1:
|
||
_phase[1] = 1;
|
||
_phase[2] = 1;
|
||
break;
|
||
case 2:
|
||
_phase[2] = 1;
|
||
_phase[3] = 1;
|
||
break;
|
||
case 3:
|
||
_phase[3] = 1;
|
||
_phase[0] = 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
digitalWrite(_pin_phase0, _phase[0]);
|
||
digitalWrite(_pin_phase1, _phase[1]);
|
||
digitalWrite(_pin_phase2, _phase[2]);
|
||
digitalWrite(_pin_phase3, _phase[3]);
|
||
}
|
||
#endif |